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A B S T R A C T

By performing a systematic DFT calculation and applying the atomistic thermodynamics analysis, the adsorption
configurations, stable concentrations of nCO + mH2 co-adsorption on three representative MoP surfaces [(101),
(001)-Mo and (001)-P] were investigated. Our results show that CO adsorbs much stronger than dissociative H2

on (101) and (001)-Mo surfaces but competitively with dissociative H2 on the (001)-P surface, and the hydrogen
saturation coverage decreases with increasing CO pre-coverage. Ab initio atomistic thermodynamics analysis
indicates the quite different CO and H2 co-adsorption manners on three surfaces under syngas atmosphere, i.e.,
at the equilibrium co-adsorption state, the Mo/P-terminated (101) surface and the Mo-terminated (001) surface
have more versatile surface CO and H2 ratios, which are entirely different from that in the gas phase. However,
the P-terminated (001) surface has only hydrogen adsorption at a wide range of conditions, which plays a role of
hydrogen reservoir. Such investigations reveal that surface CO/H2 ratio could be altered by manipulating the
pressures of the gas phase and temperatures, which would be beneficial to modify the syngas conversion re-
activity as well as different product distributions on solid catalyst surfaces.

1. Introduction

Due to the high electrical conductivity and activity, the study of
molybdenum phosphide (MoP) as a promising non-noble-metal elec-
trocatalyst is booming up in recent decades [1–14]. The possibility as
an electrode material was also extensively explored [15–20]. Also, it
has been reported that MoP possesses decent catalytic activities in
many catalysis processes. For instance, it can be served as cocatalysts to
improve the activity and stability of photocatalyst [21–24], be poten-
tially used in hydro-treating of biomass [25,26] and petroleum fractions
[27–33] as well as upgrading of non-edible oils [34–41].

Recently, it is found that in partial oxidation and dry reforming of
methane [42–44], hydrogenation of CO2 to methanol [45,46], hydro-
genation of acetic acid [47], synthesis of higher alcohols from syngas
(CO+H2) [48] and methanation of CO [49,50] processes, MoP shows
excellent catalytic performance. Especially in syngas conversion into
higher alcohols, MoP presents remarkable activity and selectivity
[51–54]. In such reactions, syngas indeed plays a significant role no
matter as reactant, intermediates or product. Therefore, investigating
the specific adsorption and activation of CO and H2 on MoP surfaces is
significant for understanding the mechanisms of these reactions.

There are extensive investigations have been reported for CO or H2

adsorption on three low index surfaces, i.e. (100), (001) and (101)
surfaces [55–60]. The mechanism of synthesis gas conversion to me-
thane and methanol, as well as the effect of K on the reaction based on a
Mo6P3 cluster model were studied by Zaman et al [61,62]. Very re-
cently, based on the surface energy calculation and morphology study
of MoP catalyst under experimental synthesis conditions [63], theore-
tical investigations have proved that CO prefers to adsorb in a mole-
cular state with saturation coverage ranging from 4/9 to 2 monolayers
(ML) on seven representative surfaces of MoP catalyst [64], while H2

prefers to adsorb in a dissociated state with saturation coverage ranging
from 1 to 4 ML [65–68]. However, it should be noted that CO and H2

coexist under real experimental conditions. Therefore, identifying the
stable CO/H2 ratio on MoP surfaces is meaningful and essential for
further correlative reaction mechanism investigations. Herein, sys-
tematic DFT computations were performed to investigate the co-ad-
sorption of CO and hydrogen on three representative MoP surfaces. The
stable surface composition of CO and H under different experimental
conditions were finally identified by thermodynamics method.
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2. Computational details

2.1. Methods

All DFT calculations were performed using the VASP (Vienna Ab
initio Simulation Package) suite [69,70]. The generalized gradient ap-
proximation with the Perdew-Burke-Ernzerhof (GGA-PBE) method
[71,72] in the projector augmented wave (PAW) formalism [73] was
used. The cutoff energy was set to 400 eV. The energy and force tol-
erance were set to 10–4 eV and 0.02 eV/Å, respectively.

The equation Eads = E(X/slab) – E(X) – E(slab) is used to calculate
the adsorption energy (Eads) of one X adsorbate. E(X/slab), E(X) and E
(slab) represent the total energy of the slab with one X adsorption, X
molecule in the gas phase and the bare surface, respectively. A negative
Eads value indicates an exothermic adsorption process. Therefore, the
more negative Eads, the more stable adsorption. The differential ad-
sorption energy (ΔEads) was defined as ΔEads = E(Xn+1/slab) – E(Xn/
slab) –E(X), where n+1 and n are the numbers of adsorbed X species. A
breakthrough point where ΔEads change to positive was used to identify
the saturation coverage. On the Y species pre-covered surface, the
formula changes to Eads = E(X&Y/slab) – E(X) – E(Y/slab) and
ΔEads = E(Xn+1&Y/slab) – E(Xn&Y/slab) –E(X), respectively. The en-
ergetics including zero-point energy correction were used for the fol-
lowing discussion. Ab initio atomistic thermodynamics [74–80] was
introduced to consider the effects of temperature and pressure on the
surface ratio of co-adsorption species. The detailed description of the
method is given in the Supplementary Information section (SI). The
monolayer (ML) coverage was defined by the ratio of the adsorbed X
adsorbates to outmost surface P atoms for (001)-P termination or Mo
atoms for other terminations.

2.2. Models

The WC-type MoP bulk crystal structure was used for calculation,
and the obtained lattice constant is a = b = 3.239 Å, c = 3.193 Å,
agree well with the experimental report (a = b = 3.223 Å and
c = 3.191 Å) [81]. For studying CO and H2 co-adsorption, three re-
presentative surfaces with different surface features were chosen, i.e.,
the most stable MoP(101) surface with Mo/P mixed termination and
the least stable MoP(001) surface with Mo or P terminations. The p
(3 × 3) supercell with ten atomic layers in total was chosen to simulate
the (001)-P surface, and the first four atomic layers were allowed to
relaxation, denoted by p(3 × 3)-10L/R4. For (001)-Mo and (101) sur-
faces, p(3 × 3)-8L/R4 and p(2 × 3)-8L/R4 supercells were used, re-
spectively. To avoid strong interactions between slabs, a vacuum layer
of 15 Å was constructed. For all three surfaces, a 3 × 3 × 1 Mon-
khorst–Pack k-point sampling was employed.

3. Results and discussion

3.1. Single CO or H2 adsorption

The surface structures of the three chosen terminations are pre-
sented in Fig. 1. The circled letters mark the possible adsorption sites.
T, B, H represent top, bridge and hollow site, respectively. As shown in
Fig. 1, on the (101) surface, there are one T site, one B site and one H
site. The most stable adsorption site of CO on this surface is T site with
Eads = -1.84 eV [64]. CO interact with one surface Mo atom through C
atom and the Mo-C distance is 2.01 Å. Molecular H2 could adsorb at the
top of surface Mo atoms (-0.54 eV), and the dissociation process is
barrierless (0.02 eV) but highly exothermic (-1.41 eV) [68]. The most
stable adsorption site of single H atom on the (101) surface is B site
with Eads = -0.73 eV, and the two Mo-H bonds are 1.88, 1.89 Å, re-
spectively. On both (001)-Mo and (001)-P surfaces, there are one T site,
one B site, one fcc hollow site (H1) and one hcp hollow site (H2). On
the (001)-Mo surface, CO locates at the B site is most stable with

Eads = -2.43 eV [64]. CO bridging two surface Mo atoms and the two
Mo-C bonds are 1.99, 2.28 Å, respectively. A Mo-O bond (2.34 Å) also
formed due to the tilted CO configuration. Molecular H2 could form
stable adsorption (-0.71 eV) at T site, but the dissociation barrier is also
very low (0.04 eV), therefore H2 also prefers the dissociative adsorption
with Eads = -1.79 eV [68]. H atom adsorbs at H1 site with Eads = -0.95
eV is most stable, and the average distance of three Mo-H bonds is 2.02
Å. On the P-termination of (001) surface, the most stable configuration
of CO adsorption is at the H2 site with Eads = -0.95 eV [64]. CO interact
with three surface P atoms and one underneath Mo atom, the Mo-C
distance is 2.22 Å, and the average P-C distance is 1.98 Å. H2 only forms
weak and physical adsorption and has very low dissociation barrier
(0.08 eV), the dissociative adsorption has Eads = -1.37 eV [68]. The
most stable configuration of H adsorption is at the T site with Eads = -
0.68 eV, and the P-H distance is 1.42 Å. The detailed structures of CO, H
and dissociative H2 adsorption on the three surfaces are shown in Fig.
S1.

It is clearly showed that the adsorption of CO is much stronger than
dissociative H2 on (101) and (001)-Mo surfaces, indicating CO pre-ad-
sorption is thermodynamically more favored. However, on the (001)-P
surface, CO adsorbs stronger than one single H atom but weaker than
dissociative H2. To identify the most stable co-adsorption state on
(001)-P surface, CO pre-adsorption and H-pre-adsorption were both
considered. Only the most stable co-adsorption states were discussed in
the later part.

3.2. CO and H2 co-adsorption on the MoP(101) surface

Table 1 listed the co-adsorption energies of nCO pre-covered (101)
surface with mH2 (including dissociative and molecular state), and all
the related adsorption configurations of nCO + 2mH were given in Fig.
S2-S11. On the clean (101) surface, the saturation coverage for CO and

Fig. 1. The top and side views of the MoP(101), MoP(001)-Mo and MoP(001)-P
surface structures and possible adsorption sites (Mo atoms/blue, P atoms/pink).

Table 1
Differential H2 dissociative adsorption energies (eV) on the nCO pre-covered
MoP(101) surface.

0CO 1CO 2CO 3CO 4CO 5CO 6CO 7CO 8CO 9CO

0H -1.84 -1.81 -1.61 -1.62 -1.54 -1.60 -0.69 -0.57 -0.42
2H -1.43 -1.40 -1.26 -1.20 -1.11 -1.04 -0.86 -0.73 -0.49 -0.33
4H -1.31 -1.18 -1.07 -0.91 -0.81 -0.66 -0.58 -0.36 -0.12
6H -1.16 -0.76 -0.47 -0.40 -0.28 -0.32 -0. 33
8H -0.14 -0.19 -0.25 -0.25 -0.29 -0.26
10H -0.27 -0.28 -0.25 -0.27 -0.22
12H -0.34 -0.24 -0.18 -0.11
14H -0.04 -0.08 -0.04
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hydrogen is 3/2ML (9CO) and 7/3 ML (14H), respectively. When the
coverage of hydrogen below 2 ML, there are only H atoms on the sur-
face. However, molecular H2 appears when coverage increasing. Ap-
parently, the differential adsorption energy and the saturation coverage
of H2 decrease with the increasing CO pre-coverage. According to the
computed differential adsorption energies of H2, it is possible to adsorb
less than 14H atoms on 1CO and 2CO pre-covered surfaces, i.e., the
saturation coverage of hydrogen is 7/3 ML (14H). On 3CO pre-covered
surface, the saturation coverage of hydrogen decreases to 2 ML (12H).
On 4CO pre-covered surface, the saturation coverage of hydrogen de-
creases to 5/3 ML (10H). On 5CO pre-covered surface, the saturation
coverage of hydrogen decreases to 4/3 ML (8H). Then, the saturation
coverage of hydrogen further decreases to 1 ML (6H) on 6CO pre-
covered surface, 2/3 ML (4H) on 7CO or 8CO pre-covered surfaces, and
1/3 ML (2H) on 9CO pre-covered surface. It should be mentioned that
on the pure or nCO (n=1-5) pre-covered surfaces, molecular H2 could
co-exist with H atoms on the surface at high coverage, but the mole-
cular H2 just weakly adsorbed (less than 0.25 eV) and easy to desorb
(Fig. S3-S7).

Furthermore, some interesting phenomenon was found for the ad-
sorption configurations of pure CO or H2 and their co-adsorption on the
(101) surface. For example, for the pure CO adsorption, the first 6CO
preferentially occupy the six T sites and the rest 3CO occupy three B
sites to reach the saturation of 9CO. For the pure H adsorption, how-
ever, the first 6H atoms preferentially occupy the six B sites and the rest
H atoms or H2 molecules occupy the six T sites to reach the saturation of
14H. In this case, CO and H will take quite different adsorption sites at
nCO (n=1-6) pre-covered surfaces, which means that CO adsorption
does not affect the adsorption configurations of the first six H atoms,
but further adsorption of H atoms was limited by the residual T sites.
On the nCO (n=7-9) pre-covered surface, H atoms can only occupy the
B sites, and the coverage of adsorbed H atoms was equal to 12-n.

3.3. CO and H2 co-adsorption on the MoP(001)-Mo surface

On the clean (001)-Mo surface, the saturation coverage for CO and
hydrogen is 1ML (9CO) with all CO on the T sites and 26/9 ML (26H)
with 9H on the H1 sites and the rest H or H2 on the T sites, respectively.
When the coverage of hydrogen more than 11/9 ML, molecular H2

appears, i.e., the dissociative and molecular state of H2 could co-exist at
high coverage (Fig. S12). The structures and co-adsorption energies of
adsorbed mH2 on nCO pre-covered (001)-Mo surface were summarized
in Fig. S13–S21 and Table 2. Similarly, the hydrogen coverage also
decreases with the increase of CO pre-coverage. According to the
computed differential H2 adsorption energies, the 1CO pre-covered
surface can have 22H (22/9ML) adsorption (22H + 1CO), 2CO pre-
covered surface can have 20H (20/9ML) adsorption (20H + 2CO), 3CO

or 4CO pre-covered surfaces can have 18H (18/9ML) adsorption
(18H + 3-4CO), 5CO pre-covered surface can have 16H (16/9ML)
adsorption (16H + 5CO), 6CO pre-covered surface can have 14H (14/
9ML, 14H + 6CO) adsorption, 7CO pre-covered surface can have 12H
(12/9ML, 12H + 7CO) adsorption, 8CO pre-covered surface can have
10H (10/9ML, 10H + 8CO) adsorption, and 9CO pre-covered surface
can have 8H atoms (8/9ML, 8H + 9CO). Notably, extra 8H atoms are
still possible to adsorb on the CO saturated surface. Despite of these
energetic changes, the co-adsorbed H atoms normally occupy the H1
and T sites, which are same to that on the clean surface. Similar to that
of (101) surface, molecular H2 could co-exist with H atoms on the nCO
(n = 1-8) pre-covered surfaces at high coverage, and H2 normally oc-
cupy the T sites. The results indicate that the location of H atoms is only
dependent on the limitation of the available free sites, while does not
affect by the pre-covered CO molecules. However, the co-adsorbed H
atoms slightly affect the adsorption configurations of CO. As shown in
Fig. S13-S19, the B-sited CO turns to T-sited as H-coverage increases.

3.4. CO and H2 co-adsorption on the MoP(001)-P surface

On the bare (001)-P surface, the saturation coverage of CO is 4/9ML
(4CO), and under this saturation coverage, one CO occupies the H2 site,
three CO occupy the B sites. However, the saturation coverage of hy-
drogen is 1ML (9H) with all H atoms at the T sites. Table 3 and Fig.
S22–S25 listed the structures and co-adsorption energies of dissociative
adsorbed mH2 on nCO pre-covered (001)-P surface. Similar to that of
(101) and (001)-Mo surfaces, the hydrogen coverage decreases from
1ML to 2/9ML with the increase of CO pre-coverage. As shown in
Table 3, the possible group of pre-covered nCO and saturated H atoms
are 6H + CO, 4H + 2CO, 4H + 3CO and 2H + 4CO. Furthermore, the
co-adsorbed CO has no effect on the adsorption configurations of H
atoms, but the co-adsorbed H atoms result in the change of CO ad-
sorption from H2 site to B site, as shown in Fig. S22–S25. It also should
be mentioned that due to the very weak physical adsorption of mole-
cular H2 on this surface (0.02-0.04 eV), only adsorption of H atom is
favored. Considering the strong P-H interaction, the possibility of PH3

formation was explored. Based on our calculation, the process of re-
moving one P-H species from 1H adsorbed or H saturated (001)-P
surface and producing one PH3 molecule is highly endothermic (2.09 or
1.95 eV). Therefore, we suppose that under low temperature, the (001)-
P surface is stable under H2 atmosphere, even in high H2 pressure.

3.5. Surface CO/H2 ratio at given temperature and pressure

Based on the nCO + 2mH co-adsorption energies and structures
obtained by our DFT calculations, the surface CO/H2 ratio and the ef-
fects of temperature (T) and pressure (p) were studied by applying the
atomistic thermodynamics. Since desorption and reaction of CO and H2

are inevitable at high temperatures, only 0-500K temperature range
was considered. For studying the effect of total pressure, the partial
pressure of CO and H2 (pCO/pH2) was set to be 1/1. The corresponding
phase diagrams were shown in Fig. 2. In each phase diagram, the re-
gions with different color represent different stable surface composition
under given conditions.

As shown in Fig. 2, the stable surface composition presents

Table 2
Differential H2 dissociative adsorption energies (eV) on the nCO pre-covered
MoP(001)-Mo surface.

0CO 1CO 2CO 3CO 4CO 5CO 6CO 7CO 8CO 9CO

0H -2.43 -2.39 -2.37 -2.21 -2.01 -1.50 -1.35 -1.57 -1.62
2H -1.83 -1.77 -1.71 -1.62 -1.57 -1.39 -1.18 -1.47 -1.16 -1.12
4H -1.66 -1.61 -1.47 -1.27 -1.15 -1.02 -0.96 -0.91 -0.97 -0.86
6H -1.56 -1.38 -1.25 -0.95 -0.61 -0.51 -0.64 -0.56 -0.59 -0.60
8H -1.29 -1.16 -0.73 -0.44 -0.35 -0.30 -0.31 -0.34 -0.48 -0.20
10H -0.82 -0.37 -0.28 -0.35 -0.31 -0.28 -0.30 -0.26 -0.20
12H -0.25 -0.35 -0.28 -0.31 -0.29 -0.28 -0.18 -0.27
14H -0.30 -0.25 -0.32 -0.34 -0.30 -0.31 -0.31
16H -0.19 -0.32 -0.27 -0.30 -0.36 -0.20
18H -0.22 -0.24 -0.36 -0.35 -0.14
20H -0.20 -0.32 -0.32
22H -0.02 -0.31
24H -0.19
26H -0.22

Table 3
Differential H2 dissociative adsorption energies (eV) on the nCO pre-covered
MoP(001-P) surface.

0CO 1CO 2CO 3CO 4CO

0H -0.95 -0.61 -0.36 -0.29
2H -1.38 -1.20 -1.16 -0.82 -0.44
4H -1.40 -1.07 -0.62 -0.22
6H -1.08 -0.60
8H -0.44
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interesting differences on the three surfaces. At pCO/pH2 = 1/1 and
different total pressures, on the (101) surface, the stable surface com-
position changes gradually from the initial 9CO+2H to 6CO+6H/6CO
+4H/6CO+2H/6CO/4CO/2CO/CO with increasing temperature. On
the (001)-Mo surface, the stable surface composition changes from the
initial 9CO+8H gradually to 9CO+6H/9CO+4H/9CO+2H/9CO(7CO
+2H)/5CO+2H co-adsorption, and then to 5CO/4CO/3CO adsorption
with increasing temperature. However, on the (001)-P surface, there is
only hydrogen adsorbed on the surface, and the surface coverage gra-
dually decreases from 8H to 6H/4H with increasing temperature.

Applying the situation under plausible total pressure (p = 1atm,
pH2 = pCO =0.5 atm) and the moderate temperature (i.e. 200K) as an
example for direct comparison, the (101) surface has CO and hydrogen
co-adsorption on the surface, and the equilibrium coverage is 6CO+6H.
The (001)-Mo surface has 9CO+6H co-adsorption. In contrast, the
(001)-P surface only has hydrogen adsorption on the surface, and the
equilibrium coverage is 8H. Based on the above discussion, it can be
found that under the syngas conversion reaction condition, the Mo/P
terminated (101) surface and (001)-Mo surface have more versatile
surface CO/H2 ratio and therefore higher opportunity to produce new
species. In contrast, the (001)-P surface prefers hydrogen adsorption
only, which could be a hydrogen reservoir. This also indicates that the
different roles of MoP surfaces in the complex CO hydrogenation re-
action mechanisms. Closer inspections of Fig. 2 also reveal that the
surface CO/H2 ratio is totally different from that in the gas phase. For
instance, the ratio of CO and H2 in the gas phase (pCO/pH2) at 200K is 1/
1, but the surface ratio is 2/1 on the (101) surface, 3/1 on the (001)-Mo
surface and 0/1 on the (001)-P surface, respectively. In summary, the
surface CO/H2 ratio could be tuned by manipulating the pressures of
the gas phase and temperatures, which would be beneficial to modify
the selectivity of syngas conversion on solid catalyst surfaces.

4. Conclusion

The co-adsorption of molecular CO and dissociative H2 on the three
representative MoP surfaces, i.e. (101), (001)-Mo and (001)-P surfaces
were systematically studied by density functional theory calculation. It
is found that CO adsorbs much stronger than dissociative H2 on (101)
and (001)-Mo surfaces but competitively with dissociative H2 on the
(001)-P surface, and the hydrogen saturation coverage decreases with
increasing CO pre-coverage. Furthermore, the pre-adsorbed CO mole-
cules have ignored effects on the adsorption configurations of H species
because of their differences in favorable adsorption sites. However, the
co-adsorbed H species slightly affect the CO adsorption configurations
with increasing H coverage.

Ab initio atomistic thermodynamics analysis indicates that these
three surfaces have different syngas adsorption properties. At the
equilibrium co-adsorption state, the Mo/P-mixed (101) surface and the
Mo-terminated (001) surface have more versatile surface CO/H2 ratio,
which is quite different from that in the gas phase. However, the P-
terminated (001) surface has only hydrogen adsorption at a wide range

of conditions, which plays a role of hydrogen reservoir. Our results
clearly reveal that surface CO/H2 ratio could be tuned by manipulating
the pressures of the gas phase and temperatures, which would be
beneficial to modify the syngas conversion reactivity as well as different
product distributions on solid catalyst surfaces.
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