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Atomically dispersed non-noble metal single-site catalysts (SSCs) provide a promising approach to meet
the catalytic requirements that traditional nanoparticles cannot accomplish. However, they often suffer
from formidable challenges of cumbersome route, unmanageable loading, inevitable burial of active site
and insufficient stability. Herein, we present a facile and hard template-assisted spatial confinement
strategy to prepare Co SSCs embedded in N-doped graphene-like carbon (NG) with ultra-high loading
of 10.26 wt%, which is close to the parent CoPc (10.31 wt%). Furthermore, the microstructure, surface area
and Co loading in the titled catalysts can be easily manipulated via altering the synthesis parameters. The
optimized Co SSCs@NG-800-50 catalyst shows excellent transfer hydrogenation of nitrobenzene
with > 99% conversion and 96.3% aniline selectivity as well as good universality for various nitroaromat-
ics in the presence of HCOOH. DFT calculations in combination with elaborate experiments unveil that
the active H is firstly generated by the dissociation of C-H bond rather than the recognized O-H bond
in HCOOH, then it is used for the hydrogenation of nitroaromatics on CoN3 site in Co SSCs@NG-800-50
catalyst, revealing the reaction mechanism of the tandem catalysis. This report paves a novel route to
design and construct efficient and high-loading non-noble metal SSCs.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

The development of multiple atomic-scale analytical techniques
makes it possible to deeply understand the spatial coordination
and electronic attribute of specific atoms within a substance from
atomic/molecular level [1,2]. Hence the emerging supported
single-site catalysts (SSCs) have drawn extensive attention in cat-
alytic community and become the most active and promising fron-
tier because of their 100% atomic utilization, unique quantum size
effects and intricate spatial integration [3–5]. The SSCs with
intriguing structural diversity and electronic properties endow
them with significantly different catalytic behaviors from their
nanoparticle counterparts [6–8], and potentially triggering innova-
tive applications and enabling effective utilization of various
metallic elements [9,10]. Particularly, N-doped carbon anchored
non-noble metal SSCs (M�N�C, M = Fe, Co, Ni, Cu, Zn etc.), as a
powerful substitute for Pd, Pt-based catalysts, are promising candi-
dates in the field of CO2 cycloaddition, oxygen reduction reaction,
biomass conversion and fine chemical transformations [11–15].

Although different types of synthetic strategies have been
explored to construct non-noble metal M�N�C in recent years
(spatial confinement, coordination/defect site construction,
freezing-assisted, chemical etching and so forth), the loading of
SSCs on carbon matrix is still rather low due to their easy aggrega-
tion attribute, which is the major obstacle to their practical appli-
cation [16–19]. To prevent the aggregation and migration of metal
atoms during pyrolysis, the amount of metal precursor introduced
must be strictly controlled, resulting in the currently reported
loading generally less than 4.4 wt% [20–25]. Beyond that, there
are still a considerable part of single-atom sites that may be firmly
confined in the bulk N-doped carbon matrix, rendering them
incline to activate small molecules such as H2O, CO2 and N2, while
the catalytic behavior of fine chemicals with larger molecular size
is greatly inhibited [26,27]. As a result, the development of a sim-
ple and feasible approach to fabricate ultra-thin N-doped carbon
with large surface area, high SSCs loading, high exposure active
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sites and extraordinary stability is a perpetual challenge in the
catalysis community.

Metal phthalocyanine (MPc) is an aromatic conjugated macro-
cyclic compound embedded with transition metal, which contains
a relatively stable and well-defined MN4 coordination structure
[28,29]. After being anchored on carbon nanotubes or graphene
via p-p interaction, polymerization and ball-milling strategies
[30–32], the resulting catalysts often show superior catalytic per-
formance for CO2 electroreduction, water splitting and benzene
hydroxylation [33–35]. The key factors are realized to be the
MN4 active site well-dispersed on the external surface of the cata-
lysts as well as the synergistic effect betweenMPc unit and carbon-
based support. Unfortunately, such well-defined catalysts are com-
pletely inactive for hydrogenation of organic chemicals. Although
the Beller and other groups have prepared a series of highly active
Co-based catalysts by pyrolysis of CoPc, CoPhen and Co-chitosan
complexes, the structure and composition of the obtained catalysts
are extremely complicated [36]. That is because they syn-
chronously include atomically dispersed CoNx, N-doped carbon
wrapped Co NPs and other potential active sites during carboniza-
tion process, which make them impractical to correlate the intrin-
sic relationship between their catalytic performance and structural
characteristics.

To resolve this conundrum, herein we put forward a hard
template-assisted and one-step pyrolysis strategy to prepare N-
doped graphene-like carbon embedded Co SSCs (Co SSCs@NG-T)
catalyst. Quite different from the conventionally adopted
approaches, the current synthetic method allows implementing
the desired catalytic performance in a single step without any
tedious post-processing. To our knowledge, no study has yet been
reported the synthesis of atomically dispersed single CoN3 sites in
N-doped graphene-like carbon with Co loading as high as 10.26 wt
%, which is close to the parent CoPc (10.31 wt%). Importantly, the
morphology and composition of the catalysts can be well-
controlled by adjusting the synthesis parameters. The optimized
Co SSCs@NG-800-50 catalyst showed excellent transfer hydro-
genation of nitrobenzene with > 99% conversion and 96.3% aniline
selectivity using formic acid as hydrogen source. DFT calculations
in combination with detailed experiments demonstrated that the
active H is firstly generated through the C-H bond dissociation in
HCOOH, and then it is transferred and hydrogenated the nitroben-
zene to produce aniline on CoN3 active site.
2. Experimental section

2.1. Materials and chemicals

Cobalt phthalocyanine (CoPc, >92%) was purchased from J&K
Chemical Reagent Co., Ltd. Phthalocyanine (Pc) was purchased
from Alfa Aesar. Dicyandiamide (C2H2N4, >99%), formic acid
(HCOOH, >99%) and various nitroaromatic compounds were
obtained from Aladdin. Isopropanol, ethanol and other solvents
were provided by Sinopharm Chemical Reagent Co., Ltd. All chem-
ical reagents were used without further purification.
2.2. Synthesis of Co SSCs@NG-T-x catalyst

In a typical procedure, dicyandiamide (DCDA, 2.0 g) and cobalt
phthalocyanine (CoPc, 0.04 � 2.0 g) were mixed and ground uni-
formly in an agate mortar. The obtained light blue powder was
transferred to a porcelain boat and heated in a tube furnace at
550 �C for 2 h with a ramp rate of 2.3 �C�min�1. During the process,
the CoPc molecules were confined within the layered graphitic car-
bon nitride framework (denoted as CoPc@g-C3N4-550). Then the
temperature was further raised to 800 �C with a ramp rate of 3 �-
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C�min�1 for 2 h in N2 atmosphere, and followed by cooling down
to room temperature naturally. The resulting black product was
marked as Co SSCs@NG-T-x and used directly without any post-
treatment. (T = 700 or 800 �C, x represent the DCDA: CoPc mass
ratio). CoPc@g-C3N4-600 sample was obtained by further heating
the CoPc@g-C3N4-550 in N2 atmosphere at 600 �C for 2 h.

In addition, the identical procedure was used to prepare Co
single-atom catalysts with various loading content except using
different ratios of Pc and CoPc monomer (mPc : mCoPc = 1:3 � 15:1).
For Co SSCs@NG-800-50 (y) with different microstructure was
firstly acquired by precisely control of heating rate (y = 1, 3, 5, 8
or 10 �C�min�1).

2.3. General procedure for the selective transfer hydrogenation of
nitroaromatics

Typically, 0.5 mmol of nitroaromatics, 1.5–2.25 mmol of
HCOOH (3 � 4.5 equiv.), 3.0 mL of solvent and 20 mg of Co
SSCs@NG-800-50 catalyst were added into a 25 mL glass reaction
vial. The reaction vessel was sealed and then heated to 90–
120 �C with a magnetic stir for a certain time. After completion
of the reaction, the catalyst was removed from the mixture by cen-
trifugation and supernatant liquid was analyzed by GC or GC–MS
with n-tetradecane as the internal standard. The calculations of
conversion and selectivity were based on the following formula:
Conv. (%) = [consumed nitrobenzene]/[initial nitrobenzene] �
100%, Sel.(%) = [aniline]/[aniline + other by-products] � 100%.

2.4. General procedure for the catalyst recycling

0.5 mmol of nitrobenzene, 2.1 mmol of HCOOH (4.2 equiv.),
3 mL of isopropanol and 20 mg of Co SSCs@NG-800-50 catalyst
were added into a 25 mL glass reaction vial. Then the reaction pro-
ceeded at 120 �C for 3–5 h. After completion of the reaction, the
catalyst was recovered and washed twice with ethyl acetate. The
filtrate containing reaction products was subjected to GC analysis.
The recycled catalyst was dried under vacuum at 50 �C for 4 h and
then used for the next cycle.

2.5. Characterization

Transmission electron microscope (TEM) was carried out on a
FEI Tecnai G2 F20S-Twin using an accelerating voltage of 200 kV.
For sample preparation, the powder was dispersed in ethanol with
the assistance of sonication, and then one drop of suspension was
slowly dropped onto a micro grid and dried naturally. High-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) images were achieved using an aberration-
corrected STEM (Nion-UltraSTEM100). X-ray absorption fine struc-
ture (XAFS) spectroscopy and X-ray absorption fine structure
(EXAFS) were performed on the beamline of 1W2B of Beijing Syn-
chrotron Radiation Facility (BSRF). The XRD measurements were
conducted on a Rigaku Ultima IV diffractometer using Cu-Ka radi-
ation as the X-ray source in the 2h range of 10–90�. Raman spectra
were collected on a Renishaw in Via microlaser Raman spectrom-
eter with a 514.5 nm laser excitation. The N2 adsorption-
desorption isotherm was obtained on a Quantachrome autosorb
iQ2 analyzer. Before measurement, the samples were degassed
under vacuum at 373 K for 5 h. Surface area of the samples was cal-
culated by the Brunauer-Emmet-Teller (BET) method. Pore volume
and pore size distribution were calculated using the Barrett-
Joyner-Halenda (BJH) model. The X-ray photoelectron spectra
(XPS) were analyzed on the PHI-5702 instrument and the C1s line
at 284.5 eV was used as the binding energy reference. The metal Co
loading amount of all samples were determined by NexION 350
inductively coupled plasma mass spectrometry (ICP-MS).
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3. Results and discussion

3.1. Microstructure characterization of Co SSCs@NG-T catalysts

The preparation procedure and microstructure of the Co
SSCs@NG-800 catalyst are presented in Fig. 1a. First, Dicyandi-
amide (DCDA) and cobalt phthalocyanine (CoPc) with different
proportions were ground uniformly in agate mortar and then
transferred to a porcelain boat. Second, the porcelain boat with
sample was placed in tube furnace and pyrolyzed from 550 to
800 �C under flowing N2 atmosphere. During the process, the gen-
erated blue powder was layered graphitic carbon nitride encapsu-
lated CoPc (CoPc@g-C3N4) when pyrolysis temperature was below
600 �C. However, the g-C3N4 hard template was gradually decom-
posed, and the volatile gases were released to purge the CoPc
graphitization and phase transformation with the increase of
pyrolysis temperature. Finally, Co atoms were trapped and
anchored on defect sites of N-doped graphene-like carbon and
the target catalyst was obtained.

TEM images in Fig. 1b and 1d showed that the as-prepared Co
SSCs@NG-800-50 catalyst has a very thin irregular vesicle shape
and without any Co NPs on its surface. Combined with the AFM
measurement, the thickness of the carbon layer was ca. 14 layers,
CoPc@g-C3

+ N2, 550 oC

Grinding

(a)

50 nm

200 nm

(b) (c)

(d) (e)

Fig. 1. (a) The schematic illustration for the preparation of Co SSCs@NC-800, (b, d) TEM
image and (f) AC HAADF-STEM image of Co SSCs@NG-800-50 catalyst.
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accounting for the salient characteristics of graphene-like structure
(Fig. S1). Energy dispersive spectroscopy elemental mapping
exhibited a uniform distribution of C, N, O and Co elements around
the vesicular catalyst. However, the HRTEM still couldn’t observe
the presence of metallic Co NPs, proving that Co species were likely
to exist in catalyst as single atoms. To prove this hypothesis, the
aberration corrected atomic-resolution high angle annular dark-
field scanning transmission electron microscopy (HAADF-STEM)
was performed. In Fig. 1e, a large number of small bright spots
were homogeneously distributed in N-doped carbon matrix, which
were attributed to the highly loaded Co single atoms.

To further investigate the electronic structure and coordination
environment of Co species at atomic level, we further conducted X-
ray absorption fine structure (XAFS) measurements at Co K-edge.
The absorption edge position of Co SSCs@NG-800-50 catalyst was
located between that of Co foil and CoPc, identifying Co single-
site was positively charged and the valence state of Co was
between 0 and +2. Moreover, the disappearance of the pre-edge
peak at 7716.8 eV (fingerprint of CoN4 structure) demonstrated
the square-planar D4h local symmetry of CoPc was reconstructed
after pyrolysis treatment [37]. From the Fourier transformed (FT)
k3-weighted EXAFS, one main peak at 1.40 Å could be observed,
corresponding to the Co-N first coordination shell, and no metallic
N4 Co SSCs@NG-800

N2 , 800 oC

Transformation

100 nm

C N

O Co

10 nm
Co SSCs

(f)

images, (c) HAADF-STEM and corresponding elemental mapping images, (e) HRTEM
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Fig. 2. XANES spectra at the Co K-edge of (a) Co foil, CoPc and Co SSCs@NG-800-50, (b) Fourier transformed (FT) k3-weighted v (k)-function of the EXAFS spectra for Co K-
edge, (c) WT for the k3-weighted EXAFS signals, (d, e) EXAFS fitting curves of Co SSCs@NG-800-50 catalyst at k space and R space, respectively, inset showing the schematic
model.
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Co-Co coordination peak at 2.14 Å could be detected [38,39].
Wavelet transform (WT) contour plot of Co SSCs@NG-800-50 pre-
sented one intensity maximum at 4.8 Å�1, corresponding to the Co-
N coordination compared with that of Co foil and CoPc references.
The quantitative coordination configuration of Co atom could be
acquired by EXAFS fitting. The coordination number of Co-N was
calculated to be 2.94, demonstrating that these single CoN3 sites
were atomically dispersed in the NG matrix. Fig. 2e presented
the optimized space structure of the aforesaid catalyst, in which
the Co was covalently bonded to the neighboring N atoms in NG
matrix with the Co-N bond length of 1.83 Å, and the perpendicular
distance of the Co atom in respect to NG support was 1.46 Å.

The parameter optimization, evolution process and morphology
regulation of the Co SSCs@NG-T-x samples were determined by
TEM analysis and the corresponding microstructures were shown
in Fig. 3. As can be seen the CoPc-800 sample was a large porous
aggregate and composed of a large number of uneven Co NPs in
bulk phase. With DCDA monomer being used as both g-C3N4 pre-
cursor and N source, the thickness of CoNPs@NG-800-1 became
significantly thinner, and the particle size became smaller and
the agglomeration situation also improved obviously. It was found
that the Co NPs had completely disappeared and accompanied by
the formation of graphene-like and irregular vesicle-like structure
when DCDA:CoPc ratio increased to 8:1. Further increasing the
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ratio of DCDA:CoPc to 32:1, the ultra-thin wrinkled graphene
structure disappeared and the materials were fully composed of
irregular vesicle-like structure. The evolution process was reflected
in Fig. 3e-h. Initially, DCDA molecule was thermal polymerization
under N2 atmosphere at 550 �C to generate g-C3N4. During this pro-
cess, CoPc molecule was in-situ confined within g-C3N4 framework,
which would be gradually decomposed and produced some pore
structures at 600 �C (Fig. 3e). As the temperature rised to 700 �C,
the restricted CoPc molecule was graphitized and converted into
N-doped graphene-like carbon embedded Co single-site catalyst
under the purging atmosphere of those released gases. Finally,
the self-supporting catalyst with irregular vesicle-like shape was
generated at 800 �C (Fig. S2). More notably, the microstructure of
the Co SSCs@NG-800-50 catalyst could be further regulated by
simply adjusting the ramp rate. Typically, as the ramp rate
increased from 1 to 10 �C/min, the morphology of the catalyst vesi-
cles was clearly changed from the fine and dense state to the large
size and loose state, and finally disappeared and formed a thin
layer fold. It is reasonable to speculate that the speed of volatile
ammonia and other gases released from the decomposition of g-
C3N4 template plays a decisive role in the structure regulation of
the catalyst. Similarly, the scanning electron microscopy (SEM)
revealed that the CoPc-800 sample obtained by pyrolysis of CoPc
precursor displayed an irregularly stacked block structure and a
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Fig. 3. TEM images of (a) CoPc-800, (b) Co NPs@NG-800-1, (c) Co SSCs@NG-800-8, (d) Co SSCs@NG-800-32, (e) CoPc@g-C3N4-550, (f) CoPc@g-C3N4-600, (g) Co SSCs@NG-700-
50, (h) Co SSCs@NG-800-50, (i-l) Co SSCs@NG-800-50 with different ramp rate, (i) 1 �C/min, (j) 5 �C/min, (k) 8 �C/min, (l) 10 �C/min.
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large number of spherical bulges on its surface. When equal mass
of the mixture of DCDA and CoPc was pyrolyzed under identical
conditions, it was found that the deposits appeared more compact
and the protrusion size was smaller. As the mass ratio of DCDA and
CoPc increased from 8:1 to 16:1, both of the catalysts contained
flake and stranded filament network structure, but the number of
filament structure decreased gradually. Interestingly, the catalysts
were entirely composed of flake structure and their size was
decreased gradually when the mass ratio of DCDA to CoPc was
increased from 32:1 to 50:1 (Figs. S3 and S4).

XRD patterns of CoPc@g-C3N4-T-50 samples (T = 550 and
600 �C) exhibited two diffraction peaks at 2h of 13.1 and 27.4�,
which were corresponding to (1 0 0) and (0 0 2) planes of in-
plane repeating motifs and graphite-like interlayer stacking,
respectively [40]. However, these two peaks were completely dis-
appeared and accompanied with a weak broad peak at 2h of 26.2�
when the pyrolysis temperature was above 700 �C, indicating the
formation of graphitic structure and absence of Co NPs in the bulk
phase. As shown in Figs. S5 and S6, XRD patterns of other related
Co-based SSCs prepared employing different Pc:CoPc mass ratio
and ramping rate also presented one broad diffraction peak at
26.2�. Raman spectra of all samples exhibited the emergence of D
(1338 cm�1) and G (1575 cm�1) bands, suggesting the successful
graphitization of the precursor complexes [41]. The N2

adsorption-desorption analysis displayed that the surface area of
Co SSCs@NG-800-50 (262.5 m2.g�1) was 22 and 12 times higher
than that of CoPc@g-C3N4-550–50 and CoPc@g-C3N4-600–50 sam-
ples (12.1 and 21.7 m2.g�1), indicating the decomposition of g-C3N4

hard template played a dominant role in the formation of
graphene-like structure. Furthermore, the loading of Co SSCs on
the NG support could be precisely regulated by altering the mass
ratio between Pc and CoPc precursors and the maximum Co con-
tent reached to 10.26 wt%, which was almost the highest Co load-
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ing for Co-based SSCs reported to date [16]. High-resolution N1s
spectrum of Co SSCs@NG-800-50 could be deconvoluted into three
peaks located at 397.8 eV, 398.9 eV and 400.1 eV, assignable to the
pyridinic N/N-Co, pyrrolic-N and graphitic-N, respectively. As
shown in Fig. 4f and Fig. S11, the dominant peaks at 779.3 eV
and 795.6 eV were assigned to Co 2p3/2 and Co 2p1/2 of Co (II),
while the peak at 780.9 eV was attributed to Co-N [42]. It was con-
sistent with XAFS analysis that the valence state of Co in the cata-
lyst was between Co0 and Co2+. The results further demonstrated
that the Co NPs were not present at all on catalyst surface and
the active site should be CoN3 center.

3.2. Selective transfer hydrogenation of nitroaromatics

The selective hydrogenation of nitroaromatics is one of the
most important organic reactions for production of high value-
added aromatic amines, which are widely used in pharmaceuticals,
pesticides and dyestuff fields [43]. However, it is usually conducted
in the presence of noble metal catalyst under pure H2 conditions
[44–51]. In the present work, we choose environment-friendly for-
mic acid as hydrogen donor to evaluate the catalytic performance
of Co SSCs@NG-T catalysts. The hydrogenation of nitrobenzene was
chosen as the benchmark reaction to investigate the effect of dif-
ferent solvents on catalytic performance. The results revealed that
the conversion of nitrobenzene and selectivity of aniline reached
the highest level in isopropanol among the investigated solvents
(Table S5). To further improve the conversion of nitrobenzene, dif-
ferent amounts of formic acid were added into the reaction system.
As shown in Fig. 5a, with the increase of the amount of formic acid,
the conversion of nitrobenzene was continuously improved, but
the selectivity of the product began to decrease when the added
amount was higher than 2.25 mmol. GC–MS analysis displayed
that the only by-product was formanilide, which was mainly pro-
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duced by dehydration between the aniline and excess HCOOH. The
temperature also plays a vital role in hydrogenation of nitroben-
zene because sufficient energy is required for the activation of for-
mic acid at CoN3 active site. Fig. 5b showed that the conversion of
nitrobenzene was > 99% and the selectivity of aniline was 96.3%
when reaction temperature was 120 �C. To distinguish the contri-
butions of N dopant and CoN3 site, we further prepared metal-
free NG support and conducted the KSCN poisoning experiment.
NO2
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Fig. 5. Selective transfer hydrogenation of nitrobenzene with (a) different amount of HC
catalyst, 0.5 mmol nitrobenzene, 3 mL isopropanol, 70–100 mg HCOOH, 90–120 �C, 2 h.
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As shown in Table S6, NG support had no activity for hydrogena-
tion of nitrobenzene. Meanwhile, the conversion of nitrobenzene
was dramatically decreased to 3.2% when KSCN was added into
reaction system, The results further unveiled that the active site
of HCOOH decomposition and subsequent nitrobenzene hydro-
genation should be CoN3 center rather than the NG support.

To illustrate the universality and potential applicability of Co
SSCs@NG-800-50, nitrobenzene derivatives with electron-donating
-800-50
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Table 1
The selective transfer hydrogenation of various substituted nitroaromatics.a

Entry Substrate Product Time (h) Conv. (%)b Sel. (%)b

1c NO2 NH2 4 93 97

2 NO2

F

NH2

F

8 >99 84

3 NO2

Cl

NH2

Cl

2 96 99

4 Cl NO2 Cl NH2 6 94 96

5 NO2

Cl

NH2

Cl

8 97 95

6 NO2

Br

NH2

Br

6 84 100

7 NO2

Br

NH2

Br

10 82 99

8 NO2

COCH3

NH2

COCH3

6 100 82

9 NO2

H3COC

NH2

H3COC

8 88 97

10 NO2

OHC

NH2

OHC

4 95 80

11 NO2

CH3

NH2

CH3

8 82 97

12d NO2 NH2 4 22 >99

a Reaction conditions: 20 mg Co SSCs@NG-800-50 catalyst (S/C = 14.4), 0.5 mmol substrate, 3 mL isopropanol, 98 mg HCOOH (4.2 equiv.), 120 �C;
b Conversion and Selectivity were determined by GC, and n-tetradecane was used as internal standard, Conversion = [consumed substrate]/[initial substrate] � 100%,

Selectivity = [product]/[product + other by-product] � 100%, respectively;
c 4.2 equiv. HCOOH, 100 �C, 4 h;
d 1 atm H2, 100 �C, 4 h.
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and electron-withdrawing groups at different positions were also
evaluated. As shown in Table 1, the o-chloronitrobenzene could be
smoothly converted to the corresponding anilines in a shorter reac-
tion time (Conv. 95.5%, Sel. 98.6%) compared to that of m- and p-
chloronitrobenzene (Table 1, entries 3–5). Likewise, the Co
SSCs@NG-800-50 catalyst presented a higher activity for o-
bromonitrobenzene and o-nitroacetophenone as compared to their
p-substituted counterparts (Table 1, entries 6–9). Trace amount of
by-product isN-phenylformamide,which is formedby condensation
between aniline and excess formic acidwithout any dehalogenation.
Thus the catalyst could address theproblemofdecreased activity and
selectivity caused by those o-substituted substrates with electron-
withdrawing groups. In contrast, the conversion of o-nitrotoluene
was 82% even with prolonged reaction time, suggesting that the
hydrophobicmethyl substituentwas not conductive to the substrate
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being close to the catalyst surface. The conversion of nitrobenzene
was still as high as 93% when it was reacted at 100 �C for 4 h. How-
ever, the conversion of nitrobenzene decreased significantly to 22%
when 1 atm of H2 was used as hydrogen source under identical con-
ditions (Table 1, entries 1 and 12). The results indicate that the
authentic mechanism of decomposition of HCOOH and the tandem
hydrogenation of nitrobenzene probably different from theuniversal
accepted understanding, that is, the HCOOHwas firstly decomposed
into H2 and CO2, and then nitrobenzenewas hydrogenated to aniline
in the presence of metal-based catalysts and other proposed mecha-
nism [52–54]. The recyclability of Co SSCs@NG-800-50 catalyst was
further investigated via the selective transfer hydrogenation of
nitrobenzene. As shown in Fig. S12, the catalyst was recycled 5 times
without any distinct change in conversion with a slightly prolonged
time, suggesting the high catalytic stability. The corresponding XRD
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and TEM results of the Co SSCs@NG-800-50 catalyst after used five
times still maintained its original phase and microstructure, further
demonstrating the excellent structural stability under the tandem
reaction (Fig. S13).

3.3. Possible reaction mechanism of HCOOH decomposition on CoN3

active site

To gain insight into the mechanism of the tandem catalytic
reaction, we further take into account the adsorption and dissoci-
ation behavior of HCOOH over CoN3 site on Co SSCs@NG-800-50
surface. DFT calculation results showed that there were four
adsorption patterns of HCOOH on CoN3 active site, that is, the O-
H or C = O segment of HCOOH got close to the catalyst surface.
The most energetically stable adsorption configuration of HCOOH
with both C and O atoms of the C = O group being attached to
the Co center was shown in Fig. 6a, the bond lengths of Co-O and
Co-C were 1.96 Å and 1.97 Å, respectively. The calculated
adsorption energy for the most stable mode of HCOOH over CoN3

was �3.31 eV, indicating that the Co SSCs@NG-800-50 catalyst
was an appropriate substrate to activate HCOOH. The energy
profile and corresponding stationary points of HCOOH dehydro-
genation were displayed in Fig. 6e. In terms of C-H bond cleavage,
the transition state TS had an imaginary frequency and the bond
lengths of Co-H and Co-C in TS were 1.91 and 1.94 Å. The required
energy barrier to dissociate C-H bond in HCOOH was calculated to
be 0.48 eV, which was only half of the dissociation energy of H2

over CoN3-Gr catalyst (0.95 eV), suggesting that active H species
is more likely to be extracted from HCOOH molecule than H2 over
CoN3 site [55]. However, The required energy barrier to dissociate
O-H bond was calculated to be 1.40 eV, which is close to 3-fold the
dissociation energy of C-H bond cleavage. According to transition-
state theory, the cleavage temperature of the C-H bond was
approximately 203 K, while the cleavage temperature of O-H bond
was as high as 587 K. (estimated by 1012 exp(-Eb/kT) � 1, where
Eb = 0.48 eV and 1.40 eV, respectively) [56]. Thus, it is concluded
that the first step dehydrogenation of HCOOH at the CoN3 site pre-
fers to start from the C-H bond cleavage rather than the recognized
O-H bond due to its lower reaction temperature [57,58]. Further
DFT calculations uncovered that the second H was also inclined
to combine and dissociate on Co site, and the energy at Co is
1.21 eV lower than that on the adjacent N site (Fig. S14). The disso-
ciation of the second H can be conducted more smoothly over CoN3
47
site on Co SSCs@NG-800-50 catalyst (Eb = 0.13 eV). So it is reason-
able to speculate that the active H species was firstly generated via
C-H bond dissociation in HCOOH, then it is transferred and hydro-
genated the nitrobenzene to aniline on CoN3 active site.
4. Conclusions

In summary, we have presented a simple and feasible strategy
for the preparation of highly N-doped and uniformly embedded
CoN3 active site via one-step pyrolysis of different proportions of
CoPc and DCDA composite precursors without any tedious post-
processing. The morphology and composition of the Co
SSCs@NG-T catalyst can be precisely controlled through fine-
tuning the synthesis parameters (such as the ramp rate, different
DCDA:CoPc and Pc:CoPc mass ratio). DFT calculations revealed that
the Co SSCs@NG-800-50 catalyst exhibits promising catalytic
activity for the dehydrogenation of formic acid, and the resulting
active H species was used for the hydrogenation process of
nitrobenzene. This work not only proposed a facile synthetic
approach for designing and fabricating ultra-high loading CoN3

embedded in N-doped carbon materials for efficient transfer
hydrogenation of nitroaromatics with HCOOH but also provided
a new understanding for the mechanism of HCOOH decomposition,
hydrogen transfer and subsequent nitrobenzene hydrogenation.
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Appendix A. Supplementary material

AFM and SEM images of the as-prepared Co SSCs@NG-T-x cata-
lysts; TGA curve of CoPc-DCDA mixture in N2 atmosphere; XRD
patterns of other Co-based single-site catalysts prepared at differ-
ent DCDA:CoPc, Pc:CoPc mass ratio and ramping rate; The pore size
distribution curves of a series of Co SSCs@NG-T-x (T = 550-800 oC)
catalysts; High-resolution XPS in N1s and Co2p spectra of the
CoPc@g-C3N4-550-50, CoPc@g-C3N4-600-50 and Co SSCs@NG-
700-50 catalysts; The results of elemental analysis and ICP-OES
for different catalysts; The results of N2 adsorption-desorption
analysis for different samples; Structural parameters extracted
from the EXAFS fitting; The influence of the various solvents;
TEM images and XRD patterns of the used Co SSCs@NG-700-50 cat-
alyst; The recyclability of Co SSCs@NG-800-50 catalyst for selective
transfer hydrogenation of nitrobenzene. Supplementary data to
this article can be found online at https://doi.org/10.1016/j.jcat.
2021.05.025.
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