ORIGINAL PAPER # Cage-like La₄B₂₄ and Core-Shell La₄B₂₉^{0/+/-}: perfect spherically aromatic tetrahedral metallo-borospherenes Xiao-Qin Lu¹ · Cai-Yue Gao¹ · Zhihong Wei¹ · Si-Dian Li¹ Received: 28 January 2021 / Accepted: 15 March 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 #### **Abstract** Cage-like and core-shell metallo-borospherenes exhibit interesting structures and bonding. Based on extensive global searches and first-principles theory calculations, we predict herein the perfect tetrahedral cage-like T_d La₄B₂₄ (1) and core-shell T_d La₄B₂₉ (2), T_d La₄B₂₉⁺ (3), and T_d La₄B₂₉⁻ (4) which all possess the same geometrical symmetry as their carbon fullerene counterpart T_d C₂₈, with four equivalent interconnected B₆ triangles on the cage surface and four nona-coordinate La centers in four conjoined η^9 -B₉ rings. In these tetra-La-doped boron complexes, La₄[B@B₄@B₂₄]^{0/+/-} (2/3/4) in the structural motif of 1 + 4 + 28 contain a B-centered tetrahedral T_d B@B₄ core in a La-decorated tetrahedral La₄B₂₄ shell, with the negatively charged tetra-coordinate B⁻ at the center being the boron analog of tetrahedral C in T_d CH₄ (B⁻ ~ C). Detailed orbital and bonding analyses indicate that these T_d lanthanide boride complexes are spherically aromatic in nature with a universal La–B₉ (d-p) σ and (d-p) δ coordination bonding pattern. The IR, Raman, and UV-Vis or photoelectron spectra of these novel metallo-borospherenes are computationally simulated to facilitate their spectral characterizations. **Keywords** First-principles theory · Metallo-Borospherenes · Tetrahedral structures · Bonding patterns · Spherical Aromaticity ## Introduction Boron as a prototypical electron-deficient element possesses a rich chemistry next only to carbon in the periodical table. It exhibits a strong propensity to form multi-center-two-electron (mc-2e) bonds in both bulk allotropes and polyhedral molecules [1, 2]. Persistent joint photoelectron spectroscopy (PES) and first-principles theory investigations in the past two decades have unveiled a rich landscape for size-selected boron clusters ($B_n^{-/0}$) from planar or quasi-planar structures (n = 3 - 38, 41, 42) to cage-like borospherenes (C_3/C_2 B_{39}^- and D_{2d} $D_{40}^{-/0}$) which are all characterized with delocalized multicenter bonding [2–6]. Seashell-like borospherenes C_2 D_{28}^- and C_s D_{29}^- were late observed in PES measurements as minor isomers competing with their quasi-planar global minimum (GM) counterparts [7, 8]. Endohedral M@B40 (M = ☑ Zhihong Wei weizhihong@sxu.edu.cn Published online: 21 April 2021 Ca, Sr) and exohedral M&B₄₀ (M = Be, Mg) metalloborospherenes were predicted in theory shortly after the discovery of D_{2d} B₄₀^{-/0} [9]. Endohedral metallo-borospherenes D_2 Ta@B₂₂⁻ and D_{2d} U@B₄₀ were proposed to be superatoms matching the 18-electron rule and 32-electron principles, respectively [10, 11]. Joint ion-mobility measurements and density functional theory (DFT) investigations indicated that boron cluster monocations (B_n⁺) possess doublering tubular geometries in the size range between n = 16-25 [12]. Extensive GM searches showed that complicated structural competitions exist in medium-sized B_n clusters, with B₄₆ being the smallest core-shell boron cluster (B₄@B₄₂) and B₄₈, B₅₄, B₆₀, and B₆₂ being the first bilayer boron clusters predicted to date [13, 14]. Transition-metal-doping induces earlier planar—tubular—cage-like—core-shell structural transitions in boron clusters, resulting in unique structures and bonding in chemistry. Typical examples include the experimentally observed transition-metal-centered boron wheels $M@B_n$ ($Co@B_8^-$, $Ru@B_9^-$, and $Ta@B_{10}^-$) and transition-metal-centered boron drums $M@B_n^-$ ($Mn@B_{16}^-$, $Co@B_{16}^-$, $Rh@B_{18}^-$, and $Ta@B_{20}^-$) [15–20]. A family of di-La-doped inverse-sand-wich-type mono-deck boron clusters $La_2B_n^-$ (n=7–9) [21, 22] and inverse triple-decker $La_3B_{14}^-$ were observed in PES Si-Dian Li lisidian@sxu.edu.cn Institute of Molecular Science, University of Shanxi, Taiyuan 030006, China experiments [23]. The first tri-La-doped spherical trihedral metallo-borospherene D_{3h} La₃B₁₈ with three La atoms as integral parts of the cage surface was discovered very recently in a joint experimental and theoretical investigation [24]. Our group predicted the possibility of the smallest inverse sandwich bi-decker tubular molecular rotor C_{2h} La₂B₂₀ $(La_2[B_2@B_{18}])$ [25] and the first core-shell spherical trihedral metallo-borospherenes D_{3h} La₃B₂₀ (La₃[B₂@B₁₈]) which contains two equivalent eclipsed B₆ triangles on the top and bottom interconnected by three B₂ units on the waist and three deca-coordinate La atoms as integral parts of cage surface [26]. We also reported the smallest metallo-borospherene D_{3h} Ta₃B₁₂ composed of two eclipsed B₃ triangles on the top and bottom interconnected by three B₂ units on the waist [27]. However, to the best of our knowledge, there have been no experimental or theoretical evidence reported on tetra-Ladoped boron clusters to date. Tetra-metal-doped core-shell metallosilicon fullerenes T_d M₄@Si₂₈ (M = Al and Ga) in the structural motif of 4 + 28 have been predicted [28] to have the same tetrahedral symmetry as their carbon fullerene counterpart T_d C₂₈ [29]. It is natural to ask at current stage what geometrical structures and bonding patterns of the tetra-Ladoped boron clusters may have and if perfect tetrahedral metallo-borospherenes are favored over other geometries in both thermodynamics and dynamics. Based on extensive GM searches and first-principles theory calculations, as an extension of the experimentally observed cage-like D_{3h} La₃B₁₈ [24] and theoretically predicted coreshell D_{3h} La₃B₂₀ [25], we predict herein the perfect tetrahedral cage-like T_d La₄B₂₄ (1) and core-shell T_d La₄B₂₉ (2), T_d $\text{La}_4\text{B}_{29}^+$ (3), and T_d $\text{La}_4\text{B}_{29}^-$ (4) which possess four equivalent inter-connected B₆ triangles on the cage surface and four nona-coordinate La centers in four equivalent conjoined η^9 -B₉ nonagonal ligands, presenting the first metalloborobspherene counterparts of the experimentally observed tetrahedral carbon fullerene T_d C_{28} [29]. More intriguingly, $La_4[B@B_4@B_{24}]^{0/+/-}$ (2/3/4) in the structural pattern of 1 + 4 + 28 possess a tetra-coordinate B center encapsulated in an inner tetrahedron (B¹)₄ and an outer tetrahedron La₄(B⁰)₂₄. These high-symmetry lanthanide boride complexes turn out to be spherically aromatic in nature with a universal La–B_o (pd) σ and (p-d) δ coordination bonding pattern. # **Methods** Extensive GM searches were performed on La_4B_{24} , $La_4B_{29}^+$ and $La_4B_{29}^-$ using the TGmin2 code [30] at DFT level, with the initial seeds being manually constructed based on the experimentally observed $La_3B_{18}^-$ [24] and theoretically predicted $La_3B_{19}^-$ and $La_3B_{20}^-$ [26]. Over 2000 trial structures were explored for each species in both singlet and triplet states at PBE/TZVP. The low-lying isomers were subsequently # **Results and discussion** #### Strucutres and stabilities With inspiration from the previously reported D_{3h} La₃B₁₈ and D_{3h} La₃B₂₀ [24, 26] which possess two equivalent eclipsed B₆ triangles interconnected by three B₂ units on the cage surface and three deca-coordinate La centers in three conjoined η^{10} -B₁₀ rings, we manually constructed the perfect tetrahedral cage-like T_d La₄B₂₄ (1) with four equivalent interconnected B₆ triangles on the cage surface and four nonacoordinate La centers in four conjoined η^9 -B₉ rings (Fig.1) Encouragingly, extensive GM searches show that, being overwhelmingly more stable than other low-lying isomers, La₄B₂₄ (1, ¹A₁) is the well-defined GM of the neutral (Fig. S1) with the lowest vibrational frequency of $v_{min} = 119.87 \text{ cm}^{-1}$ at PBE0. It is 0.79 eV more stable than the second lowestlying isomer C_s La₄B₂₄ with a B₂ core and 1.23 eV more stable than the third lowest-lying isomer C_s La₄B₂₄ with a B₃ core at CCSD(T) level, respectively (Fig. S1). The triplet cage-like C_1 La₄B₂₄ (³A) slightly distorted due to Jahn-Teller effect appears to be much less stable than the T_d GM (by 1.28 eV) at PBE0 (Fig. S1). La₄B₂₄ (1) possesses the B-B bond length of $r_{B-B} = 1.57$ Å between the interconnected B₆ triangles, B-B bond, length of $r'_{B-B} = 1.66$ Å within the central B₃ triangles in B₆ triangular motifs, and average La-B coordination bond length of $r_{\text{La-B}} = 2.75 \text{ Å}$ between La atoms and their η⁹-B₉ ligands. The large calculated HOMO–LUMO gap of $\Delta E_{\rm gap} = 2.35$ eV at PBE0 well supports its high chemical stability. Cage-like La₄B₂₄ (1) appears to be the first metalloborospherene possessing the same tetrahedral symmetry as its J Mol Model (2021) 27:130 Page 3 of 7 130 Fig. 1 Optimized structures of cage-like T_d La₄B₂₄ (1) and coreshell T_d La₄[B@B₄@B₂₄] (2), T_d La₄[B@B₄@B₂₄] $^+$ (3), and T_d La₄[B@B₄@B₂₄] $^-$ (4), with the central B atom highlighted in blue and four apex B atoms of the tetrahedral T_d B@B₄ core highlighted in red in 2, 3, and 4 carbon fullerene counterpart—the experimentally observed quintet T_d C₂₈ (5 A₁) [29]. Extensive molecular dynamic simulations indicate that La₄B₂₄ (1) is also highly dynamically stable, with the small calculated average root-mean-square-deviations of RMSD = 0.13 Å and maximum bond length deviations of MAXD = 0.43 Å at 1000 K, respectively (Fig. 2). Detailed NBO analyses show that the La centers in La₄B₂₄ (1) possess the natural atomic charge of q_{La} = +1.49 |e| and electronic configuration of La[Xe]4f^{0.16}5d^{1.32}6s^{0.09}, indicating that La donates its 6s² electron almost completely to the surrounding B₉ ligand in La₄B₂₄ (1) while accepting partial valence electron (\sim 0.32 |e|) from the boron ligand in its partially occupied 5d orbitals via $p \rightarrow d$ back donations. Bond order analyses show that the La centers in La₄B₂₄ (1) possess the total Wiberg bond order of WBI_{La} = 2.79 and average La–B bond order of WBI_{La–B} = 0.26, evidencing the formation of effective La–B coordination interactions in the complex. The high-symmetry tetrahedral T_d La₄[B@B₄@B₂₄] (2) (2 A₂) was achieved by encapsulating a B-centered tetrahedral T_d B@B₄ core inside the cage-like La₄B₂₄ (1), forming a perfect tetrahedral core-shell lanthanide boride complex with a tetra-coordinate B at the cage center (Fig. 1). Surprisingly and intriguingly, extensive DFT calculations indicate that, Fig. 2 Born-Oppenheimer molecular dynamics simulations of La₄B₂₄ (1) (a) and La₄[B@B₄@B₂₄] (4) (b) at 1000 K. The root-mean-square-deviation (RMSD) and maximum bond length deviation (MAXD) values (on average) are indicated in Å with a singly occupied non-degenerate highest occupied α orbital (a₂), the doublet La₄[B@B₄@B₂₄] (2) well retains its identical tetrahedral T_d symmetry during full structural optimizations. As the most stable isomer obtained, it lies 0.79 eV lower than the second lowest-lying isomer C_1 La₄B₂₉ (2 A) (Fig. S2). The tetrahedral B@B4 core and La4B24 (1) shell turn out to match both geometrically and electronically in La₄[B@B₄@B₂₄] (2) which has the lowest vibrational frequency of $v_{min} = 128.94 \text{ cm}^{-1}$ and α -HOMO-LUMO gap of $\Delta E_{\rm gap} = 2.23$ eV. Detaching one election from or attaching one electron to La₄[B@B₄@B₂₄] (2) results in the perfect singlet T_d La₄[B@B₄@B₂₄]⁺ (3, ¹A₁) and T_d $La_4[B@B_4@B_{24}]^-$ (4, 1A_1) which also appear to be the well-defined GMs of the systems lying 0.79 eV and 0.69 eV lower than the second lowest-lying core-shell C_s La₄B₂₉⁺ and C_1 La₄B₂₉ at PBE0, respectively (Fig. S3 and Fig. S4). $La_4[B@B_4@B_{24}]^{+/-}$ (3/4) possess the large HOMO-LUMO gaps of $\Delta E_{\text{gap}} = 2.84/2.21$ eV and lowest vibrational frequencies of $v_{\text{min}} = 125.50/131.35 \text{ cm}^{-1}$. The La₄[B@B₄@B₂₄]^{0/+/-} (2/3/4) core-shell complex series in a 1 + 4 + 28 structural motif possess the B-B bond lengths of $r_{B-B} = 1.65/1.64/1.66$ Å between the central B atom and inner tetrahedron (Bi)4, B-B distances of $r_{B-B} = 1.73/1.73/1.73$ Å between the inner tetrahedron (B¹)₄ and outer tetrahedron (B⁰)₂₄, and the La–B distances of $r_{\text{La-B}} = 2.88/2.93/2.85$ Å between the B atom at the center and La atoms on the outer shell. They can thus be viewed as the first bi-shell metallo-borospherenes with the tetrahedral B center encapsulated in an inner tetrahedron (B¹)₄ and an outer tetrahedron La₄(B⁰)₂₄. Similar to the previously reported endohedral metallosilicon fullerenes T_d $M_4@Si_{28}$ (M = Al and Ga) which follow the structural motif of 4 + 28 [28], core-shell La₄[B@B₄@B₂₄]^{0/+/-} (2/3/4) in the structural motif of 1 + 4 + 28 possess the same tetrahedral symmetry as their carbon fullerene counterpart T_d C_{28} [29]. These core-shell complexes also appear to be highly dynamically stable, as exemplified in Fig. 2 for La₄[B@B₄@B₂₄] (4) which has the small calculated average RMSD = 0.13 Åand MAXD = 0.41 Å at 1000 K, respectively. The behavior of the central B atom in these core-shell complexes appears to be especially interesting. Detailed NBO analyses indicate that the central B in La₄[B@B₄@B₂₄]^{0/+/-} (2/3/4) possesses the natural atomic charge of $q_{\rm B}=-1.00/-1.05/-1.00$ |e|, electronic configurations of B[He]2s^{0.51}2p^{3.48}/B[He]2s^{0.52}2p^{3.52}/B[He]2s^{0.52}2p^{3.52}, and total Wiberg bond orders of WBI_B = 3.71/3.71/3.71, respectively. The central B atom thus carries approximately a unit negative charge of $q_{\rm B}\approx-1.0$ |e| in these complexes regardless of the charge states of the systems, resulting in a B⁻ monoanion at the cage center which is isovalent with a neutral C atom. The negatively charged tetra-coordinate B⁻ center in 2, 3, 4 is thus a boron analog of the tetrahedral C in T_d CH₄, indicating the B⁻ \sim C analogy [44] in these B-centered coreshell complexes. The tetrahedral T_d B⁻@B₄ unit in La₄[B@B₄@B₂₄]^{0/+/-} (2/3/4) appears to have the same symmetry as the well-known tetrahedral T_d BH₄⁻ (which is isovalent with T_d CH₄ [44]), in obvious contrast to the experimentally observed planar $C_{2\nu}$ B₅⁻ in gas phase [2, 3] due to effective B(p)-B₆(π) σ interactions between the B⁻@B₄ core and T_d B₂₄ outer shell (as detailed below). ## **Bonding analyses** To better interpret the high stabilities of these T_d lanthanide boride complexes, we performed detailed AdNDP bonding analyses on the closed-shell La₄B₂₄ (1) and $La_4[B@B_4@B_{24}]^+$ (3) to recover both the localized and delocalized bonds of the systems. As shown in Fig. 3(a), La₄B₂₄ (1) possesses 6 2c-2e B-B σ bonds with the occupation number of ON = 1.88 |e| between the four interconnected B₆ triangles on the cage surface and 16 3c-2e σ bonds with ON = 1.91 |e| on four equivalent B₆ triangular motifs, forming the σ skeleton of the cage-like system. Over the σ skeleton, there exist 4 equivalent 6c-2e π bonds with ON = 1.91 over four quasi-planar B_6 triangles at the corners. The remaining 16 delocalized bonds are mainly responsible for the La-B₉ coordination interactions in the complex, including 12 equivalent 5c-2e La- B_4 (d-p) σ bonds with ON = 1.72 and 4 equivalent 10c-2e La-B₉ (d-p) δ bond with ON = 1.62 evenly distributed over four La@B9 nonagons on the cage surface. Such a bonding pattern renders spherical aromaticity to cage-like La₄B₂₄ (1), as evidenced by the calculated negative nucleus-independent chemical shift (NICS) [45] values of NICS = -31.69 ppm at the cage center and NICS = -33.41 ppm 1.0 Å above the cage center along the C_2 molecular axes. Figure 3(b) indicates that the core-shell La₄[B@B₄@B₂₄]⁺ (3) well inherits the main bonding elements of La₄B₂₄ (1), with the 6 2c-2e B-B σ bonds, 16 3c-2e σ bonds, 12 5c-2e La-B₄ (d-p) σ bonds, and 4 10c-2e La-B₉ (d-p) δ bonds remaining basically unchanged. The main difference occurs at the 4 2c-2e B-B σ -bonds in the B@B₄ core beween the central B atom and (B¹)₄ inner tetrahedron and 4 7c-2e B₆(π)-B(p) σ interactions between the four B1 atoms in the inner shell and four capping B₆ triangles in the outer shell in the first row and 3 29c-2e π -p σ bonds totally delocalized on the core-shell B₂₉ framework ([B@B₄@B₂₄]) in the fourth row. Interestingly, similar to La₄B₂₄ (1), La₄[B@B₄@B₂₄] $^{0/+/-}$ (2/3/4) possess the negative calculated NICS values of NICS = -33.92/ -43.18/-28.19 ppm 1.0 Å above the B center along the C_2 molecular axes, respectively, indicating that these core-shell borospherenes are also spherically aromatic in nature. The 12 5c-2e La-B₄ (d-p) σ and 4 10c-2e La-B₉ (d-p) δ coordination bonds in La_4B_{24} (1) and $La_4[B@B_4@B_{24}]^+$ (3) play a vital role in stabilizing these perfect tetrahedral lanthanide boride complexes. J Mol Model (2021) 27:130 Page 5 of 7 130 Fig. 3 AdNDP bonding patterns of the closed-shell La_4B_{24} (1) (a) and $La_4[B@B_4@B_{24}]^+$ (3) (b), with the occupation numbers (ONs) indicated # IR, Raman, and UV-Vis/PES spectral simulations The IR, Raman, and UV-Vis spectra of La_4B_{24} (1) and IR, Raman, and PES spectra of $La_4[B@B_4@B_{24}]^-$ (4) are computationally simulated in Fig. 4 to facilitate their future characterizations. T_d La₄B₂₄ (1) possesses highly simplified IR and Raman spectra due to its high symmetry, including four sharp IR peaks at 215(t₂), 239(t₂), 810(t₂), and 1036 (t₂) cm⁻¹ and eight active Raman vibrations at 137 (a₁), 239(t₂), 391(a₁), 473(a₁), 1036(t₂), 1065(a₁), 1257(t₂), and 1267(a₁) Fig. 4 Simulated IR, Raman, and UV-Vis spectra of La_4B_{24} (1) (a) and IR, Raman, and PES spectra of $La_4[B@B_4@B_{24}]^-$ (4) (b) at PBE0 level 130 Page 6 of 7 J Mol Model (2021) 27:130 cm⁻¹, respectively. Detailed vibrational analyses indicate that the symmetrical vibrations at 137 cm $^{-1}$ (a₁) and 391 cm $^{-1}$ (a₁) represent typical radial breathing modes (RBMs) of the cagelike complex which can be used to characterize single-walled hollow boron nanostructures [46]. The strong UV bands around 323, 341, 376, 436, and 459 nm originate from electronic transitions from deep inner shells of the neutral to its high-lying unoccupied molecular orbitals, while the weak broad bands around 490, 526, 625, and 772 nm mainly involve electronic excitations from the occupied frontier orbitals around the HOMO (t_2) of the neutral. As shown in Fig. 4(b), La₄[B@B₄@B₂₄] (4) exhibits similar IR and Raman spectral features to La₄B₂₄ (1), with the strongest IR vibration at 258 cm⁻¹ (t₂) and typical RBM vibrations at 153 cm⁻¹ (a₁) and 448 (a₁) cm⁻¹. The calculated PES spectrum of La₄[B@B₄@B₂₄] (4) exhibits major spectral features at 2.08, 3.51, 3.75, 4.31, and 5.18 eV which correspond to vertical electronic transitions from the ground state of the anion $(^{1}A_{1})$ to the ground state $(^{2}A_{2})$ and excited states $(^{2}T_{1}, {^{2}T_{2}},$ ²T₂, ²T₂) of the neutral at the ground-state geometry of the anion, respectively. ## **Conclusions** Perfect tetrahedral cage-like La_4B_{24} (1) and core-shell $La_4B_{29}^{0/+/-}$ (2/3/4) with spherical aromaticity have been predicted in this work at first-principles theory level to be the first metallo-borospherenes reported to date possessing the same tetrahedral symmetry as their carbon fullerene counterpart T_d C_{28} . The tetrahedral $B@B_4$ core and tetrahedral La_4B_{24} (1) shell match both geometrically and electronically in the $La_4B_{29}^{0/+/-}$ (2/3/4) series. Such species could be synthesized and characterized in gas phases using a La-B binary target in PES experiments. [21–24] These high-symmetry lanthanide boride complexes and their chemically modified derivatives may serve as building blocks to form various nanoclusters and nanomaterials with novel electronic, magnetic, and optical properties. Supplementary Information The online version of this article (https://doi.org/10.1007/s00894-021-04739-8) contains supplementary material, which is available to authorized users. Availability of data and material All the data are available online. Code availability N/A **Authors' contributions** Z. H. Wei and S. D. Li designed the project and X. Q. Lu and C. Y. Gao performed the calculations. All the authors participate in the discussion and preparation of the manuscript. **Funding** The work was supported by the National Natural Science Foundation of China (21720102006 and 21973057 to S.-D. Li). #### **Declarations** **Conflict of interest** The authors declare no conflicts of interests. ### References - Cotton FA, Wilkinson G, Murrillo CA, Bochmann M, Advanced Inorganic Chemistry, Wiley, New York, 6th edn, 1999, p. 1355, ISBN 0-471-19957-5 - Wang LS (2016) Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 35:69–142. https://doi.org/10.1080/ 0144235X.2016.1147816 - Jian T, Chen XN, Li SD, Boldyrev AI, Li J, Wang LS (2019) Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 48:3550–3591. https://doi. org/10.1039/c9cs00233b - Chen Q, Li WL, Zhao YF, Zhang SY, Hu HS, Bai H, Li HR, Tian WJ, Lu HG, Zhai HJ, Li SD, Li J, Wang LS (2015) Experimental and theoretical evidence of an axially chiral Borospherene. ACS Nano 9:754–760. https://doi.org/10.1021/nn506262c - Zhai HJ, Zhao YF, Li WL, Chen Q, Bai H, Hu HS, Piazza ZA, Tian WJ, Lu HG, Wu YB, Mu YW, Wei GF, Liu ZP, Li J, Li SD, Wang LS (2014) Observation of an all-boron fullerene. Nat. Chem. 6: 727–731. https://doi.org/10.1038/nchem.1999 - Bai H, Chen TT, Chen Q, Zhao XY, Zhang YY, Chen WJ, Li WL, Cheung LF, Bai B, Cavanagh J, Huang W, Li SD, Li J, Wang LS (2019) Planar B₄₁ and B₄₂ clusters with double-hexagonal vacancies. Nanoscale 11:23286–23295. https://doi.org/10.1039/ C9NR09522E - Wang YJ, Zhao YF, Li WL, Jian T, Chen Q, You XR, Ou T, Zhao XY, Zhai HJ, Li SD, Li J, Wang LS (2016) Observation and characterization of the smallest borospherene, B₂₈ and B₂₈. J. Chem. Phys. 144:064307. https://doi.org/10.1063/1.4941380 - Li HR, Jian T, Li WL, Miao CQ, Wang YJ, Chen Q, Luo XM, Wang K, Zhai HJ, Li SD, Wang LS (2016) Competition between quasi-planar and cage-like structures in the B₂₉ cluster: photoelectron spectroscopy and ab initio calculations. Phys. Chem. Chem. Phys. 18:29147–29155. https://doi.org/10.1039/C6CP05420J - Bai H, Chen Q, Zhai HJ, Li SD (2015) Endohedral and Exohedral Metalloborospherenes: M@B₄₀ (M=Ca, Sr) and M&B₄₀ (M=Be, Mg). Angew. Chem. Int. Ed. 54:941–945. https://doi.org/10.1002/ anie.201408738 - Li HR, Liu H, Tian XX, Zan WY, Mu YW, Lu HG, Li J, Wang YK, Li SD (2017) Structural transition in metal-centered boron clusters: from tubular molecular rotors Ta@B₂₁ and Ta@B₂₂⁺ to cage-like endohedral metalloborospherene Ta@B₂₂⁻. Phys. Chem. Chem. Phys. 19:27025–27030. https://doi.org/10.1039/C7CP05179D - Yu TR, Gao Y, Xu DX, Wang ZG (2018) Actinide endohedral boron clusters: a closed-shell electronic structure of U@B₄₀. Nano Res. 11:354. https://doi.org/10.1007/s12274-017-1637-9 - Oger E, Crawford NRM, Kelting R, Weis P, Kappes MM, Ahlrichs R (2007) Boron cluster Cations: transition from planar to cylindrical structures. Angew. Chem. Int. Ed. 46:8503–8506. https://doi.org/ 10.1002/anie.200701915 - Sai LW, Wu X, Gao N, Zhao JJ, King RB (2017) Boron clusters with 46, 48, and 50 atoms: competition among the core–shell, bilayer and quasi-planar structures. Nanoscale 9:13905–13909. https://doi.org/10.1039/C7NR02399E - Pei L, Ma YY, Yan M, Zhang M, Yuan RN, Chen Q, Zan WY, Mu YW, Li SD (2020) Bilayer B₅₄, B₆₀, and B₆₂ clusters in a universal structural pattern. Eur. J. Inorg. Chem. 34:3296–3301. https://doi.org/10.1002/ejic.202000473 J Mol Model (2021) 27:130 Page 7 of 7 130 Romanescu C, Galeev TR, Li WL, Boldyrev AI, Wang LS (2011) Aromatic metal-centered monocyclic boron rings: Co©B₈⁻ and Ru©B₉⁻. Angew. Chem. Int. Ed. 50:9334–9337. https://doi.org/ 10.1002/ange.201104166 - Galeev TR, Romanescu C, Li WL, Wang LS, Boldyrev AI (2012) Observation of the highest coordination number in planar species: Decacoordinated Ta©B₁₀ and Nb©B₁₀ anions. Angew. Chem. Int. Ed. 51:2101–2105. https://doi.org/10.1002/ange.201107880 - Jian T, Li WL, Popov IA, Lopez GV, Chen X, Boldyrev AI, Li J, Wang LS (2016) Manganese-centered tubular boron cluster – MnB₁₆⁻: a new class of transition-metal molecules. J. Chem. Phys. 144:154310. https://doi.org/10.1063/1.4946796 - Popov IA, Jian T, Lopez GV, Boldyrev AI, Wang LS (2015) Cobalt-centred boron molecular drums with the highest coordination number in the CoB₁₆ cluster. Nat. Commun. 6:8654. https:// doi.org/10.1038/ncomms9654 - Jian T, Li WL, Chen X, Chen TT, Lopez GV, Li J, Wang LS (2016) Competition between drum and quasi-planar structures in RhB₁₈⁻: motifs for metallo-boronanotubes and metallo-borophenes. Chem. Sci. 7:7020–7027. https://doi.org/10.1039/C6SC02623K - Li WL, Jian T, Chen X, Li HR, Chen TT, Luo XM, Li SD, Li J, Wang LS (2017) Observation of a metal-centered B₂-Ta@B₁₈ tubular molecular rotor and a perfect Ta@B₂₀ boron drum with the record coordination number of twenty. Chem. Commun. 53: 1587–1590. https://doi.org/10.1039/C6CC09570D - Li WL, Chen TT, Xing DH, Chen X, Li J, Wang LS (2018) Observation of highly stable and symmetric lanthanide octa-boron inverse sandwich complexes. Proc. Natl. Acad. Sci. U. S. A. 115: E6972–E6977. https://doi.org/10.1073/pnas.1806476115 - Chen TT, Li WL, Li J, Wang LS (2019) [La(η^x-B_x)La]⁻ (x = 7–9): a new class of inverse sandwich complexes. Chem. Sci. 10:2534–2542. https://doi.org/10.1039/c8sc05443f - Chen TT, Li WL, Chen WJ, Li J, Wang LS (2019) La₃B₁₄⁻: an inverse triple-decker lanthanide boron cluster. Chem. Commun. 55: 7864–7867. https://doi.org/10.1039/c9cc03807h - Chen TT, Li WL, Chen WJ, Yu XH, Dong XR, Li J, Wang LS (2020) Spherical trihedral metallo-borospherenes. Nat. Commun. 11:2766. https://doi.org/10.1038/s41467-020-16532-x - Lu XQ, Chen Q, Tian XX, Mu YW, Lu HG, Li SD (2019) Predicting lanthanide boride inverse sandwich tubular molecular rotors with the smallest core–shell structure. Nanoscale 11: 21311–21316. https://doi.org/10.1039/c9nr07284e - Zhao XY, Yan M, Wei ZH, Li SD (2020) Donor–acceptor duality of the transition-metal-like B₂ core in core–shell-like metalloborospherenes La₃&[B₂@B₁₇] and La₃&[B₂@B₁₈]. RSC Adv. 10:34225–34230. https://doi.org/10.1039/d0ra06769e - Zhang Y, Zhao XY, Yan M, Li SD (2020) From inverse sandwich Ta₂B₇⁺ and Ta₂B₈ to spherical trihedral Ta₃B₁₂⁻: prediction of the smallest metallo-borospherene. RSC Adv. 10:29320–29325. https://doi.org/10.1039/d0ra05570k - Gao Y, Zeng XC (2005) M₄@Si₂₈ (M=Al, Ga): metal-encapsulated tetrahedral silicon fullerene. J. Chem. Phys. 123:204325. https:// doi.org/10.1063/1.2121568 - Guo T, Diener Chai M, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Science Uranium Stabilization of C₂₈: A Tetravalent Fullerene. 257: 1661–1664. https://doi.org/10.1126/science.257.5077.1661 - Chen X, Zhao YF, Zhang YY, Li J (2019) TGMin: an efficient global minimum searching program for free and surface- - supported clusters. J. Comput. Chem. 40:1105–1112. https://doi. org/10.1002/jcc.25649 - Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–6170. https://doi.org/10.1063/1.478522 - Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: non-empirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401. https://doi.org/10.1103/PhysRevLett.91.146401 - Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72: 650. https://doi.org/10.1063/1.438955 - Feller D (1996) The role of databases in support of computational chemistry calculations. J. Comput. Chem. 17:1571–1586. https:// doi.org/10.1002/(SICI)1096-987X - Schuchardt L, Didier B, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J. Chem. Inf. Model. 47: 1045–1052. https://doi.org/10.1021/ci600510j - Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford - Čížek J (1969) On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. Adv. Chem. Phys. 14:35–89. https://doi.org/10.1002/9780470143599.ch2 - Purvis III GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 76:1910. https://doi.org/10.1063/1.443164 - Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157: 479-483. Https://doi.org/157.1989/479 - 40. Werner HJ, et al., Molpro, version 2012.1 - Tkachenko NV, Boldyrev AI (2019) Chemical bonding analysis of excited states using the adaptive natural density partitioning method. Phys. Chem. Chem. Phys. 21:9590–9596. https://doi.org/10. 1039/c9cp00379g - Glendening PED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F. NBO 6.0, 2013 - VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167:103–128. https://doi.org/ 10.1016/j.cpc.2004.12.014 - Alexandrova AN, Birch KA, Boldyrev AI (2003) Flattening the B₆H₆²⁻ octahedron Ab initio prediction of a new family of planar all-boron aromatic molecules. J. Am. Chem. Soc. 125:10786–10787. https://doi.org/10.1021/ja0361906 - Schleyer PR, Maerker C (1996) Nucleus-independent chemical shifts: a simple and efficient Aromaticity probe. J. Am. Chem. Soc. 118:6317–6318. https://doi.org/10.1021/JA960582D - Ciuparu D, Klie R, Zhu YM, Pfefferle L (2004) Synthesis of pure boron Single-Wall nanotubes. J. Phys. Chem. B 108:3967–3969. https://doi.org/10.1021/jp049301b **Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.