

Predicting the Structural Transition in Medium-Sized Boron Nanoclusters: From Bilayer B₆₄, B₆₆, B₆₈, B₇₀, and B₇₂ to Core-Shell B₇₄

Ling Pei^{+, [a, b]} Qiao-Qiao Yan^{+, [a]} and Si-Dian Li^{*[a]}

Recent experimental observation of the first bilayer clusters $B_{48}^{-/0}$ reveals a new structural domain in boron nanostructures. Inspired by the previously reported bilayer B_{48} , B_{54} , B_{60} , and B_{62} and based on extensive global-minimum searches and density-functional theory calculations, we predict herein a new series of medium-sized bilayer boron nanoclusters C_2 B_{64} (I), D_2 B_{68} (III), C_1 B_{70} (IV), and C_i B_{72} (V) which all contain an elongated B_{46} bilayer hexagonal prism at the center with four effective interlayer 2c-2e B–B σ bonds formed between the top and bottom layers and the bilayer to core-shell structural transition at B_{74} where core-shell species start to dominate in thermody-

Introduction

As a prototypical electron-deficient element, boron has a rich chemistry^[1] next only to carbon in the periodical table. Persistent joint photoelectron spectroscopy (PES) and firstprinciples theory investigations in the past two decades have unveiled a rich landscape for size-selected $B_n^{-/0}$ boron clusters from planar or quasi-planar (2D) boron sheets (n=3-38, 41-42),^[2] cage-like borospherenes D_{2d} B₄₀^{-/0} and C_3/C_2 B₃₉^{-[3]} to bilayer $D_{2h} B_{48}^{-/0}$.^[4] The borospherene family has been extended at first-principles theory level to include the B_n^{q} series (n=36-42, q=n-40) which are all composed of twelve intervoven boron double chains with six hexagons or heptagons on the cage surface in a universal bonding pattern of $\sigma\!+\!\pi$ double delocalization.^[3,5] Seashell-like borospherenes $C_2 B_{28}^{-}$ and $C_s B_{29}^{-}$ were late observed in PES measurements as minor isomers competing with their 2D global minimum (GM) counterparts.^[6] Following the same structural motif, seashell-like $C_s B_{29}^+$, C_2 B_{31}^{+} , $C_2 B_{32}$, $C_2 B_{34}$, $C_2 B_{35}^{+}$, and $C_2 B_{38}^{+}$ were predicted in theory recently.^[7] Boron cluster monocations B_n^+ (n = 16-25) were shown to possess double-ring tubular geometries in a joint ionmobility measurements and density functional theory (DFT)

[a]	Dr. L. Pei, ⁺ Dr. QQ. Yan, ⁺ Prof. Dr. SD. Li
	Institute of Molecular Science,
	Shanxi University,
	Taiyuan 030006, China
	E-mail: lisidian@sxu.edu.cn
[b]	Dr. L. Pei ⁺
	Department of Chemical Engineering and Safety,
	Binzhou University,
	Binzhou 256603, China

- [⁺] L. Pei and Q.-Q. Yan contributed equally to this work.
- Supporting information for this article is available on the WWW under https://doi.org/10.1002/ejic.202100328

namics, defining the up-limit of the bilayer boron nanoclusters at B₇₂. The newly obtained bilayer C_2 B₆₄ (I), D_2 B₆₈ (III), and C_1 B₇₀ (IV) appear to be systematically more stable than the previously reported cage-like D_{4d} B₆₄, core-shell C_1 B₆₈, and quasi-planar C_{3v} B₇₀, respectively. Detailed bonding analyses indicate that these bilayer species follow the universal bonding pattern of $\sigma + \pi$ double delocalization, rendering three-dimensional aromaticity to the systems. The IR, Raman, and UV-vis spectra of the concerned bilayer species are computationally simulated to facilitate their future characterizations.

investigation.^[8] Neutral core-shell B_n clusters C₁ B₆₈, C₁ B₇₄, C₁ B₈₀, D_{3d} B₉₈, C_{2h} B₁₀₀, C_s B₁₀₁, D_{3d} B₁₀₂, C_s B₁₁₁, C_s B₁₁₂, C_s B₁₁₃, and C_s B₁₁₄ with a partially or completely encapsulated icosahedral B₁₂ core were predicted to dominate in thermodynamics in a large cluster size range starting from n = 68, with C_s B₁₁₂ being the most stable core-shell species in thermodynamics reported to date between B_{68} - $B_{130'}$ ^[9] indicating that an icosahedral B_{12} cage serves as the energetically most favorable "seeds" to form three-dimensional (3D) boron allotropes in bottom-up approaches. B₈₄ as an exception was previously predicted to favor a quasi-planar C_{2v} geometry at DFT level.^[10] Recent extensive GM searches showed that complicated structural competitions exist in medium-sized B_n clusters, with $C_2 B_{46}$ being the smallest core-shell boron cluster ($B_4@B_{42}$) reported to date and $D_{2h} B_{48r} C_2$ B_{54} , C_{2h} , B_{60} , and C_1 , B_{62} being the first bilayer boron clusters with a B_{38} bilayer hexagonal prism at the center surrounded by certain numbers of boron atoms on the waist.^[9f,11] Encouragingly, bilayer $D_{2h} B_{48}^{-/0}$ clusters were very recently observed in a joint PES and first-principles theory investigation, providing the first experimental evidence for the viability of free-standing 2D bilayer borophenes similar to monolayer graphenes.^[4] However, there has been no theoretical or experimental evidence reported to date on bilayer boron clusters beyond B₆₂ where bilayer structures prevail over other geometries and the up-limit of bilayer boron nanoclusters at which the bilayer to core-shell structural transition occurs still remains unknown.

Based on extensive GM searches and first-principles theory calculations, we predict in this work the bilayer $C_2 B_{64}$ (I), $D_2 B_{66}$ (II), $D_2 B_{68}$ (III), $C_1 B_{70}$ (IV), and $C_i B_{72}$ (V) as the GMs of the systems beyond B_{62} and the bilayer to core-shell structural transition at B_{74} where the most stable bilayer isomer obtained is found to be slightly less stable than the previously reported core-shell $C_1 B_{74}^{(9d)}$ in thermodynamics. The bilayer B_{64} , B_{66} , B_{66} ,

B₇₀, and B₇₂ all contain an elongated B₄₆ bilayer hexagonal prism at the center surrounded by certain numbers of boron atoms on the waist, featuring four effective interlayer B–B σ bonds between eight inward-buckled boron atoms on the top and bottom layers. These highly stable bilayer nanoclusters follow the universal bonding pattern of $\sigma + \pi$ double delocalization and are three dimensionally aromatic in nature.

Results and Discussions

Structures and Stabilities

The optimized bilayer $C_2 B_{64}$ (I), $D_2 B_{66}$ (II), $D_2 B_{68}$ (III), $C_1 B_{70}$ (IV), and $C_i B_{72}$ (V) GMs are shown in Figure 1, with more alternative

low-lying isomers depicted in Figure S1. The configurational energy spectra of B₆₄, B₆₆, B₆₈, B₇₀, and B₇₂ are depicted in Figure 2 at PBE0/6-311 + G(d) level. The calculated lowest-lying vibrational frequencies v_{min} at PBE0/6-31G(d) and HOMO-LUMO energy gaps ΔE_{gap} , cohesive energy per atom E_{coh} , and nucleus-independent chemical shifts (NICS)^[12] at PBE0/6-311 + G(d)^[13] are comparatively tabulated in Table 1 for bilayer B_n clusters in the size range between n=48-72. The $E_{coh} \sim n$ curves of B_n clusters (n=48-74) in different structural motifs are compared in Figure 3.

As shown in Figure S1a in the ESI⁺, eighteen out of the twenty lowset-lying isomers of B_{64} within 1.74 eV at PBE0/6-31G (d) all possess bilayer geometries. The axially chiral bilayer $C_2 B_{64}$ (l) which can be obtained by adding a B_4 rhombus over the B_6 hexagonal window on the upper end of the previously reported

Figure 1. Top and side views of the optimized structures of $C_2 B_{64}$ (I), $D_2 B_{66}$ (II), $D_2 B_{66}$ (II), $C_1 B_{70}$ (IV), and $C_i B_{72}$ (V) at PBE0/6-311 + G(d) level. The elongated B_{46} bilayer hexagonal prisms at the center are highlighted in black circles and inward-buckled B atoms interconnected by four interlayer B–B bonds are colored in blue.

Figure 2. Configurational energy spectra of (a) $B_{64'}$ (b) $B_{66'}$ (c) $B_{68'}$ (d) $B_{70'}$ and (e) B_{72} at PBE0/6-311 + G(d) level. Black, red and blue horizontal lines represent bilayer, core-shell and quasi-planar structures, respectively. Relative energies are given in eV.

Table 1. Comparison of the v_{min} (cm⁻¹), ΔE_{gap} (eV), E_{coh} (eV/atom) and NICS (ppm) values calculated for the bilayer B_n (n=48–72) clusters reported to date.

B _n	v _{min} [cm ⁻¹] ^[a]	$\Delta E_{ m gap}$ [eV] ^[b]	E _{coh} ([eV] atom) ^[b]	NICS [ppm] ^[b]		
$\begin{array}{c} D_{2h} B_{48} \\ C_2 B_{54} \\ C_{2h} B_{60} \\ C_1 B_{62} \\ C_2 B_{64} \\ D_2 B_{66} \\ D_2 B_{68} \end{array}$	75.11	1.49	-5.3433	-31.2		
	128.4	1.98	-5.3653	-33.2		
	105.5	1.14	-5.3646	-41.5		
	135.5	1.45	-5.3824	-31.4		
	110.7	1.54	-5.3858	-20.5		
	18.8	1.13	-5.3920	-33.3		
	137.5	1.47	-5.4025	-16.8		
$C_1 B_{70} C_i B_{72}$	22.0	1.43	-5.4103	-12.3		
	107.6	1.55	-5.4132	-5.7		
[a] At PBE0/6-31G(d) level [b] At PBE0/6-311 + G(d) level						

 $C_{2h} B_{60}^{[11]}$ contains an elongated B_{46} bilayer hexagonal prism at the center (highlighted in a black circle in Figure 1) surrounded by 18 B atoms on the waist. It features four effective interlayer B–B σ bonds between eight inward-buckled boron atoms (highlighted in blue) on the top and bottom layers. $C_2 B_{64}$ (I) appears to be the well defined GM of B_{64} strongly favored in thermodynamics over other isomers (Figure 2a): it is 0.79 eV and 0.92 eV more stable than the second lowest-lying bilayer C_2 B_{64} and first lowest-lying core-shell $C_1 B_{64}$ at PBE0/6-311 + G(d), respectively (Figure S1a). The previously proposed cage-like D_{4d} $B_{64}^{[14]}$ proves to be much less stable than the C_2 GM (by 3.53 eV) at PBE0/6-31G(d) (Figure S1a).

The potential energy surface of B_{66} appears to be more congested (Figure 2b). Its seven lowest-lying isomers within 0.85 eV at PBE0/6-311 + G(d) all possess bilayer configurations, with the axially chiral GM D_2 B_{66} (II) which can be obtained from the previously reported C_{2h} $B_{60}^{(11)}$ by adding two -B-B-Bchains over two B_6 hexagons on the upper and down ends being only 0.02 and 0.15 eV more stable than the second lowest-lying isomer bilayer C_1 B_{66} at PBE0/6-311 + G(d) and TPSSh/6-311 + G(d)^[13a,15] (Figure S1b), respectively. These two close-lying bilayer isomers are practically iso-energetic in thermodynamics and may coexist in gas-phase experiments. The prototypical core-shell C_1 B₆₆, quasi-planar C_s B₆₆, cage-like D_2 B₆₆, and triple-ring tubular C_{2h} B₆₆^[16] are found to be 0.84, 2.24, 3.43, and 4.15 eV less stable than B₆₆ (II) at PBE0/6-31G(d), respectively (Figure S1b).

B₆₈ is an object more concerned in this work. It has a complicated configurational competition between bilayer and core-shell isomers, with the core-shell isomers starting to appear as the fourth, sixth, and seventh lowest-lying isomers (Figure 2c and Figure S1c). An amorphous incomplete core-shell C_1 B₆₈ with a partially encapsulated icosahedral B₁₂ core was proposed by Zhao and co-workers in 2010 via unbiased GM searches.^[9d] However, in conjunction with manual structural constructions based on known bilayer species, extensive GM searches performed in this work indicate that the highsymmetry axially chiral bilayer D_2 B₆₈ (III) is 0.51 eV and 0.58 eV more stable than the previously reported core-shell $C_1 B_{68}^{[9d]}$ at PBE0/6-311+G(d) and TPSSh/6-311+G(d), respectively (Figure S1c), presenting a bilayer D_2 B₆₈ as the GM of the system for future experiments to confirm. The second and third lowestlying bilayer isomers also appear to be obviously more stable than core-shell C_1 B₆₈ (Figure 3c). D_2 B₆₈ (III) can be obtained either from the previously reported C_{2h} B₆₀^[11] by adding two equivalent B4 rhombuses over two B6 hexagons on the upper and down ends or from D_2 B₆₆ (II) by adding two pentacoordinate η^5 -B atoms at the two ends. It possesses an elongated B_{46} bilayer hexagonal prism at the center sealed by 22 B atoms on the waist, featuring four effective interlayer B-B σ bonds formed between the top and bottom layers. The prototypical quasi-planar C1 B68, cage-like C1 B68, and hexa-ring tubular $C_1 B_{68}$ are found to lie 2.98, 4.57, 4.57 eV higher than the bilayer D_2 GM at PBE0/6-31G(d), respectively (Figure S1c).

Adding two more boron atoms to D_2 B_{68} (III) to form a B_6 hexagonal window on one side of the waist generates the most

Figure 3. Binding energy per atom of the B_n clusters (n = 48–74) in different structural motifs: bilayer (squares), core-shell (circles), planar (triangles), tubular (inverted triangles), and cage-like (rhombuses).

stable bilayer $C_1 B_{70}$ (**IV**) which lies 2.07 and 1.39 eV more stable than the previously predicted quasi-planar triplet $C_{3v} B_{70} ({}^{3}A_{1})^{(10)}$ at PBE0/6-311 + G(d) and TPSSh/6-311 + G(d), respectively (Figure S1d). Five more bilayer isomers (the second, third, fourth, sixth, and seventh isomers) and one core-shell isomer (the fifth isomer) are found to be energetically more favorable than quasi-planar $C_{3v} B_{70}$. The tubular $C_s B_{70}$ is found to lie 2.81 eV higher than B_{70} (**IV**) at PBE0/6-31G(d) (Figure S1d).

Addition of two more boron atoms to B₇₀ generates more complicated structural competitions to the system. As shown in Figure 2e, bilayer $C_i B_{72}$ (V) is the most stable isomer obtained for B_{72} in this work, with both the first (C_1) and second (C_1) lowset-lying core-shell isomers being 0.37 and 0.70 eV less stable than the bilayer GM at PBE0/6-311 + G(d), respectively. B_{72} (V) can be obtained either from $C_1 B_{70}$ (IV) by adding two more boron atoms to the system to form two symmetrically distributed B₆ hexagonal windows on two diagonal edges or from D_2 B₆₈ (III) by adding four boron atoms to the system to form two equivalent B₆ hexagonal windows on two diagonal edges. Typical tubular and guasi-planar isomers appear to be at least 3.64 eV less stable than B72 (V) at PBE0/6-31G(d) (Figure S1e). It is noticed that B_{72} (V) possesses the highest cohesive energy per atom of $E_{coh} = -5.4132 \text{ eV}$ in the bilayer B_n series between n = 48-72 (Table 1 and Figure 3) where, in overall, the bilayer species prevail in relative energies over planar, coreshell, and tubular structural motifs (Figure 3).

With two more boron atoms added in, a dramatic bilayer to core-shell structural transition occurs at B_{74} where the previously reported incomplete core-shell $C_1 \ B_{74}^{[9d]}$ appears to be slightly more stable than the most stable bilayer $C_1 \ B_{74}$ obtained in this work by 0.40 eV and 0.27 eV at PBE0/6-311 + G(d) and TPSSh/6-311 + G(d) levels, respectively (Figure S1f). This observation defines $C_i \ B_{72}$ (V) as the up-limit of the bilayer structural motif in medium-sized B_n clusters beyond which core-shell structures start to dominate in thermodynamics (Figure 3). The smallest core-shell B_n cluster is thus B_{74} at both PBE0 and TPSSh levels, instead of the previously predicted $B_{68}^{(9d)}$ with both B_{70} and B_{72} possessing bilayer GMs which are obviously more stable than their core-shell counterparts (Figure 2 and 3).

Bilayer B₆₄ (I), B₆₆ (II), B₆₈ (III), B₇₀ (IV), and B₇₂ (V) with the large calculated HOMO-LUMO gaps of 1.54, 1.13, 1.47, 1.43, and 1.55 eV (Table 1) also appear to be dynamically stable, as demonstrated in Figure S2 for D_2 B₆₆ (II) and D_2 B₆₈ (III) which have the small average root-mean-square-deviations of RMSD = 0.13, 0.20 Å and maximum bond length deviations of MAXD = 0.66, 1.33 Å at 700 K, respectively (Figure S2). Similar situations exist in other bilayer species. These bilayer species which can be viewed as squashed cage-like structures all appear to be 3D aromatic in nature, as evidenced by their negative calculated NICS values NICS = $-5.7 \sim -33.3$ ppm in the size range between n = 64-72 (Table 1).

Bonding Analyses

To better interpret the high stabilities of these bilayer species, detailed AdNDP^[17] bonding analyses were performed on the

high-symmetry $D_2 B_{66}$ (II) and $D_2 B_{68}$ (III) in Figure 4. As shown in Figure 4a, B₆₆ (II) possesses 4 interlayer 2c-2e B-B σ-bonds between eight inward-buckled B atoms on the top and bottom layers with the occupation numbers of ON = 1.80 - 1.87 |e|, 28 2c-2e B-B σ -bonds on the waist with ON = 1.73-1.83 |e|, 40 3c-2e σ bonds on the top and bottom layers with ON = 1.78-1.93 |e|, 2 5c–2e σ bonds at two corners on the left and right with ON = 1.73 |e|, 6 9c-2e σ bonds on the upper and down ends with ON = 1.85–1.95 |e|, and 1 14c–2e σ bond at the center between the top and bottom layers with ON = 1.77 |e|. The remaining 18 delocalized π bonds are divided into four categories over the σ -skeleton, including 2 5c-2e π bonds at two corners on the left and right with ON = 1.88 |e|, 8 6c-2e π bonds on the top and bottom layers around the central region with ON = 1.82 - 1.83 |e|, 2 7c-2e π bonds over two B₇ hexagonal pyramids at the center on the top and bottom layers with ON = 1.79 |e|, and 6 17c-2e π bonds at the upper and down ends with ON = 1.80 - 1.92 |e|. Such a bonding pattern in an overall symmetry of D_2 follows the universal bonding pattern of $\sigma + \pi$ double delocalization observed in bilayer B_{48} , B_{54} , and $B_{62}^{[11]}$ and the B_n^{q} borospherene family (n = 36-42, q = n-40).^[3,5]

 D_2 B₆₈ (III) exhibits a similar bonding pattern (Figure 4b) with $D_2 B_{66}$ (II). It has 84 σ -bonds in total, including 4 interlayer 2c-2e σ bonds between eight inward-buckled B atoms in the top and bottom layers, 28 2c-2e σ bonds on the waist, 48 3c-2e σ bonds on the top and bottom layers, 2 5c–2e σ bonds at two corners on the left and right, and 2 7c–2e σ bonds on the two B₇ hexagonal pyramids on the top and bottom layers at the center. The corresponding π system includes 2 5c–2e π bonds at two corners on the left and right, 8 6c–2e π bonds around the central region on the top and bottom layers, 2 7c–2e π bonds at the centers of the top and bottom layers, and 6 18c-2e π bonds around the upper and down ends of the bilayer structure. The universal $\sigma + \pi$ double delocalization bonding pattern renders 3D aromaticity to the bilayer B_n cluster series with n = 48, 54, 60, 64, 66, 68, 70, and 72, as evidenced by their calculated negative NICS values of NICS = -41.5 ~ -5.7 ppm at their geometrical centers (Table 1). These bilayer species possess the large calculated HOMO-LUMO gaps between $\Delta E_{aap} = 1.13 \sim 1.98$ eV, showing their high chemical stabilities in gas phases, with $C_2 B_{54}$ and $C_i B_{72}$ possessing the largest ΔE_{qap} = 1.98 eV and 1.55 eV, respectively (Table 1).

Spectral Simulations

To facilitate future spectral characterizations of these bilayer species, we simulate the infrared (IR), Raman, and UV-vis spectra of $D_2 \ B_{66}$ (II) and $D_2 \ B_{68}$ (III) in Figure 5. B_{66} (II) exhibits five strong IR peaks at 231 cm⁻¹ (b₂), 273 cm⁻¹ (b₂), 958 cm⁻¹ (b₃), 1135 cm⁻¹ (b₂), and 1433 cm⁻¹ (b₃), while $D_2 \ B_{68}$ (III) possesses three intensive IR active modes at 824 cm⁻¹ (b₃), 936 cm⁻¹ (b₃), and 1435 cm⁻¹ (b₃), respectively. B_{66} (II) has two major Raman active vibrational modes at 811 cm⁻¹ (a) and 1421 cm⁻¹ (a) and $D_2 \ B_{68}$ (III) exhibits two strong Raman bands at 839 cm⁻¹ (a) and 851 cm⁻¹ (a), respectively. The weak vibrational modes at 275 cm⁻¹ (a) in $D_2 \ B_{66}$ (II) and 255 and 320 cm⁻¹ in $D_2 \ B_{68}$ (III)

Full Papers doi.org/10.1002/ejic.202100328

Figure 4. AdNDP bonding patterns of (a) D₂ B₆₆ (II) and (b) D₂ B₆₈ (III).

represent typical "radial breathing modes" (RBMs)^[18] of the two bilayer structures at PBE0/6-31G(d) which can be used to characterize hollow boron nanostructures.

The strong UV absorption peak of D_2 B₆₆ (II) occurs at 324 nm (¹B₃) which mainly originates from the S0 \rightarrow S327 electronic excitation with major contributions from HOMO-16 \rightarrow LUMO+2 (25%) and HOMO-4 \rightarrow LUMO+11 (19%) transitions (Table S1). The other strong absorptions at 375 (¹B₃), 388 (¹B₃) and 444 (¹B₃) nm also correspond to the excitations from the occupied inner shells to unoccupied frontier orbitals. The strongest UV absorption peak of D_2 B₆₈ (III) at 315 nm (¹B₃) corresponds to the electronic transition of S0 \rightarrow S365 with major contributions from HOMO-9 \rightarrow LUMO+8 (22%) and HOMO-11 \rightarrow LUMO+5 (25%) (Table S1).

Summary

Based on extensive GM searches and manual structural constructions, we have expanded in this work the bilayer boron cluster series from the previously reported D_{2h} B₄₈, C_2 B₅₄, C_{2h} B₆₀, and C_1 B₆₂^[11] to C_2 B₆₄ (I), D_2 B₆₆ (II), D_2 B₆₈ (III), C_1 B₇₀ (IV), and C_i B₇₂ (V) where bilayer configurations dominate and predicted the bilayer to core-shell structural transition at B₇₄ where a coreshell isomer starts to prevail in thermodynamics. The bilayer I–V all contain an elongated B₄₆ hexagonal prism at the center which features four effective interlayer 2c–2e B–B σ bonds formed between the top and bottom layers. Such 3D aromatic bilayer boron nanoclusters follow the universal bonding pattern of $\sigma + \pi$ double delocalization and may be used as building blocks to form stable 2D free-standing bilayer borophenes partially passivated via the formation of effective interlayer B–B σ bonds and weak interlayer π - π stacking.

Theoretical procedures

The GMs of $B_{64},\;B_{66},\;B_{68},\;B_{70},\;and\;B_{72}$ were searched using the TGMin program^[19] at the PBE level,^[20] in conjunction with manual structural constructions based on the previously predicted bilayer B_{48} , B_{54} , B_{60} , and B_{62} .^[9f,11] Low-lying isomers were firstly reoptimized at the PBE0/6-31G(d), with vibrational frequencies checked (Table 1) and zero-point corrections encluded. To achieve more reliable relative energies, the five lowest-lying isomers of B₆₄, B₆₆, B₆₈, B₇₀, and B₇₂ were further reoptimized at the PBE0/6-311 + $G(d)^{[13]}$ and TPSSh/6-311 + G- $(d)^{[13a,15]}$ levels, respectively. Detailed chemical bonding analyses were carried out on the high-symmetry $D_2 B_{66}$ (II) and $D_2 B_{68}$ (III) utilizing the adaptive natural density partitioning (AdNDP)^[17] approach at PBE0/6-31G, with the bonding patterns visualized utilizing the Molekel software.^[21] The IR and Raman spectra of D_2 B₆₆ (II) and D_2 B₆₈ (III) were simulated at PBE0/6-31G(d) level and their UV-vis absorption spectra calculated using the timedependent density functional method (TD-DFT-PBE0).[22] All the calculations in this work were done using the Gaussian16 package.^[23] Extensive Born-Oppenheimer molecular dynamics (BOMD) simulations were performed on the $D_2 B_{66}$ (II) and $D_2 B_{68}$

Figure 5. Simulated IR, Raman, and UV-vis of (a) D₂ B₆₆ (II) and (b) D₂ B₆₈ (III) at PBE0/6-31G(d) level.

(III) at 700 K for 30 ps, using the software suite CP2K^[24] with the GTH-PBE pseudopotential and DZVP-MOLOPT-SR-GTH basis set.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21720102006 and 21973057 to S.-D. Li).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Boron Clusters · Density Functional Theory · Structures, Bonding · Three-Dimensional Aromaticity · Bilayer Borophenes

- a) A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, A. I. Boldyrev, *Acc. Chem. Res.* **2014**, *47*, 1349–1358; b) T. N. Gribanova, R. M. Minyaev, V. I. Minkin, A. I. Boldyrev, *Struct. Chem.* **2020**, *31*, 2105–2128.
- [2] a) J. K. Olson, A. I. Boldyrev, J. Phys. Chem. A 2013, 117, 1614–1620;
 b) A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, L. S. Wang, Coord. Chem. Rev. 2006, 250, 2811–2866; c) L. S. Wang, Int. Rev. Phys. Chem. 2016, 35, 69–142; d) T. Jian, X. N. Chen, S. D. Li, A. I. Boldyrev, J. Li, L. S. Wang, Chem. Soc. Rev. 2019, 48, 3550–3591; e) H. Bai, T. T. Chen, Q. Chen, X. Y. Zhao, Y. Y. Zhang, W. J. Chen, Wa. L. Li, L. F. Cheung, B. Bai, J. Cavanagh, W. Huang, S. D. Li, J. Li, L. S. Wang, Nanoscale 2019, 11, 23286–23295.
- [3] a) Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li, L. S. Wang, ACS Nano. 2015, 9, 754–760; b) H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, L. S. Wang, Nat. Chem. 2014, 6, 727–731.
- [4] W. J. Chen, Y. Y. Ma, T. T. Chen, M. Z. Ao, D. F. Yuan, Q. Chen, X. X. Tian, Y. W. Mu, S. D. Li, L. S. Wang, *Nanoscale* **2021**, *13*, 3868–3876.
- [5] a) Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai, S. D. Li, *Angew. Chem. Int. Ed.* **2015**, *54*, 8160–8164; *Angew. Chem.* **2015**, *127*, 8278–8282; b) Q. Chen, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, *Phys. Chem. Chem. Phys.* **2016**, *18*, 14186–14190; c) Q. Chen, H. R. Li, C. Q. Miao, Y. J. Wang, H. G. Lu, T. Gao, Y. W. Mu, G. M. Ren, H. J. Zhai, S. D. Li, *Phys. Chem. Chem. Phys.* **2016**, *18*, 11610–11615; d) W. J. Tian, Q. Chen, H. R. Li, M. Yan, Y. W. Mu, H. G. Lu, H. J. Zhai, S. D. Li, *Phys. Chem. Chem. Phys.* **2016**, *18*, 9922–9926.

- [6] a) Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li, L. S. Wang, *J. Chem. Phys.* 2016, 144, 064307; b) H. R. Li, T. Jian, W. L. Li, C. Q. Miao, Y. J. Wang, Q. Chen, X. M. Luo, K. Wang, H. J. Zhai, S. D. Li, L. S. Wang, *Phys. Chem. Chem. Phys.* 2016, 18, 29147–29155.
- [7] a) L. Pei, H. R. Li, M. Yan, Q. Chen, Y. W. Mu, H. G. Lu, Y. B. Wu, S. D. Li, *Phys. Chem. Chem. Phys.* **2018**, *20*, 15330–15334; b) L. Pei, M. Yan, X. Y. Zhao, Y. W. Mu, H. G. Lu, Y. B. Wu, S. D. Li, *RSC Adv.* **2020**, *10*, 10129– 10133; c) H. Liu, Q. Chen, H. R. Li, X. Y. Zhao, X. X. Tian, Y. W. Mu, H. G. Lu, S. D. Li, *Phys. Chem. Chem. Phys.* **2018**, *20*,15344–15349; d) H. Liu, Y. W. Mu, S. D. Li, *J. Cluster Sci.* DOI:10.1007/s10876-020-01943-z.
- [8] E. Oger, N. R. Crawford, R. Kelting, P. Weis, M. M. Kappes, R. Ahlrichs, Angew. Chem. Int. Ed. 2007, 46, 8503–8506; Angew. Chem. 2007, 119, 8656–8659.
- [9] a) M. Zhang, H. G. Lu, S. D. Li, *Nano Res.* DOI:10.1007/s12274-021-3411-x;
 b) D. L. Prasad, E. D. Jemmis, *Phys. Rev. Lett.* **2008**, *100*, 165504; c) H. Li,
 N. Shao, B. Shang, L. F. Yuan, J. Yang, X. C. Zeng, *Chem. Commun.* **2010**, *46*, 3878–3880; d) J. J. Zhao, L. Wang, F. Y. Li, Z. F. Chen, *J. Phys. Chem. A* **2010**, *114*, 9969–9972; e) F. Y. Li, P. Jin, D. E. Jiang, L. Wang, S. B. B. Zhang, J. J. Zhao, Z. F. Chen, *J. Chem. Phys.* **2012**, *136*, 074302; f) L. W. Sai, X. Wu, N. Gao, J. J. Zhao, R. B. King, *Nanoscale* **2017**, *9*, 13905–13909.
- [10] A. B. Rahane, V. Kumar, Nanoscale 2015, 7, 4055-4062.
- [11] L. Pei, Y. Y. Ma, M. Yan, M. Zhang, R. N. Yuan, Q. Chen, W. Y. Zan, Y. W. Mu, S. D. Li, *Eur. J. Inorg. Chem.* **2020**, 3296–3301.
- [12] a) P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. J. Jiao, N. J. R. V. E. Hommes, J. Am. Chem. Soc. **1996**, *118*, 6317–6318; b) Z. F. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. V. R. Schleyer, Chem. Rev. **2005**, *105*, 3842–3888.
- [13] a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650–654; b) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158– 6170.
- [14] Q. B. Yan, X. L. Sheng, Q. R. Zheng, L. Z. Zhang, G. Su, Phys. Rev. B 2008, 78, 201401.
- [15] V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129–12137.
- [16] F. Y. Tian, Y. X. Wang, J. Chem. Phys. 2008, 129, 024903.
- [17] a) N. V. Tkachenko, A. I. Boldyrev, Phys. Chem. Chem. Phys. 2019, 21, 9590–9596; b) D. Y. Zubarev, A. I. Boldyrev, Phys. Chem. Chem. Phys.

2008, 10, 5207–5217; c) D. Y. Zubarev, A. I. Boldyrev, J. Org. Chem. 2008, 73, 9251–9258.

- [18] D. Ciuparu, R. F. Klie, Y. M. Zhu, L. Pfefferle, J. Phys. Chem. B 2004, 108, 3967–3969.
- [19] a) Y. F. Zhao, X. Chen, J. Li, *Nano Res.* 2017, 10, 3407–3420; b) X. Chen, Y. F. Zhao, L. S. Wang, J. Li, *Comput. Theor. Chem.* 2017, 1107, 57–65; c) X. Chen, Y. F. Zhao, Y. Y. Zhang, J. Li, *J. Comput. Chem.* 2019, 40, 1105–1112.
- [20] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- [21] U. Varetto, Molekel 5.4.0.8, Swiss National Supercomputing Center, Manno. Switzerland, 2009.
- [22] a) R. Bauernschmitt, R. Ahlrichs, *Chem. Phys. Lett.* **1996**, *256*, 454–464;
 b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, *J. Chem. Phys.* **1998**, *108*, 4439–4449.
- [23] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian* 16, Revision C.01, Gaussian, Inc., Wallingford CT, **2016**.
- [24] J. V. Vondele, M. Krack, F. Mohamed, M. Parrinello, T. S. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103–128.

Manuscript received: April 23, 2021 Revised manuscript received: May 31, 2021 Accepted manuscript online: June 2, 2021