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a  b  s  t  r a  c t

This  work reports a sensitive  amperometric  biosensor  for  organophosphate  pesticides (OPs) fabricated

through modifying  glassy carbon  electrode  with  acetylcholinesterase  (AChE)  immobilized  on porous-

reduced graphene  oxide  (pRGO).  The pRGO  sheets  can not  only  provide  high  surface  area  but also  facilitate

the diffusion  and  mass  transport  of reactants.  The as-prepared  biosensor  shows  high affinity to  acetylthio-

choline (ATCl) with  a Michaelis–Menten constant value of 0.73  mM.  Furthermore,  based  on  the  inhibition

of the  enzymatic  activity  (immobilized  AChE) caused  by  the  model compound  of carbaryl  (one  kind of

pesticides), it is found that  the  inhibition  activity of carbaryl  is  proportional  to its concentration  ran-

ging from  0.001  to 0.05 �g  mL−1.  The developed biosensor  shows  a  detection limit  of 0.5 ng  mL−1 for  OPs

detection  and  exhibits good performance  such  as  reproducibility and  stability,  which  makes it possible

to provide  a new  and promising  tool for  the  analysis  of enzyme  inhibitors.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Organophosphate compounds, as the most commonly applied

pesticides in agriculture, are proved to be the typical insecti-

cide exhibiting fairly high toxicity. With the exploitation of many

pesticides, the rapid, reliable, qualitative and quantitative deter-

minations of trace levels of these compounds are significant to

health and the environment [1].  A combination of enzymatic

reactions with the electrochemical method allows the develop-

ment of different enzyme-based electrochemical biosensors for

environmental analysis [2].  Among these, amperometric acetyl-

cholinesterase (AChE) biosensors have shown satisfactory result

for organophosphate pesticides (OPs) determination based on the

inhibition of AChE [3,4],  which the enzyme activity is  employed as

an indicator for quantitative measurement of insecticides. When

AChE is immobilized on the working electrode surface, its inter-

actions with the acetylthiocholine (ATCl, substrate) produce the

electro-active product of thiocholine. The inhibition on the enzyme

system can be monitored by  measuring the oxidation current of

thiocholine [2]. As an alternative strategy, many nanomaterials

including gold nanoparticles, carbon nanotubes and so on have

been employed to fabricate AChE biosensors with good perfor-

mance including high sensitivity, rapid response and good stability

[5–9].

Graphene, as a new two-dimensional carbon nanomaterial,

has attracted increasing attention during recent years by virtue
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of its outstanding physical, chemical properties and excellent

electrocatalytic ability. According to recent reports [10–14],  the

special properties of graphene may  provide insight into the fab-

rication of novel biosensors for virtual applications: the high

surface area is helpful in  increasing the surface loading of

the target enzyme molecules, the excellent conductivity and

small band gap are favorable for conducting electrons from

the biomolecules [15]; and graphene-based chemical sensors

reported previously have a  much higher sensitivity because

of the low electronic noise from thermal effect [16].  Ionic

liquid-functionalized graphene [17], CdS-decorated graphene

nanocomposite [18],  TiO2-decorated graphene nanohybrid [19],

nanohybrid of gold nanoparticles and chemically reduced graphene

oxide nanosheets [20] and 3-carboxyphenylboronic acid/reduced

graphene oxide/gold nanocomposites [21] have been employed

to fabricate AChE biosensors which show good performance

including high sensitivity, rapid response and good stabil-

ity.

Graphene and graphene-based composite materials possessing

three-dimensional (3D) porous architectures are preferred for the

aforementioned applications owing to their very large surface areas

and low mass transport resistance. Recently, porous graphene has

stimulated much interest due to its potential applications in  gas

separation [22],  nanoelectronics, hydrogen storage [23] and many

other fields [24–26].  Compared with graphene, porous graphene

shows improved performance in electronic devices [24],  supercap-

acitors [25] and gas sensors [26].  Porous graphene should also be

very useful as a new support because porous supports can not only

provide high surface area but also facilitate the diffusion and mass

transport of reactants [27–30].
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To the best of our  knowledge, the AChE biosensor based on

porous graphene has not been developed. In an effort to develop a

highly sensitive biosensing platform for OPs, we have explored the

utilization of as-prepared porous reduced graphene oxide (pRGO)

as an immobilization matrix. The immobilized AChE exhibits

great affinity to its substrate and excellent catalytic effect on the

hydrolysis of ATCl. Since AChE is the target of OPs, the proposed

enzyme-based biosensors have been developed as a  new method

for monitoring of trace OPs based on their inhibitions. In order to

estimate the properties of the interface, such characterization tech-

niques as cyclic voltammetry (CV) and electrochemical impedance

spectroscopy (EIS) are  used and a  sensitive method for determina-

tion of carbaryl is proposed.

2. Experimental

2.1. Materials and reagents

Acetylcholinesterase (AChE, Type C3389, 500 U mg−1 from elec-

tric eel), acetylthiocholine chloride (ATCl) and carbaryl were

purchased from Sigma–Aldrich (USA) and used without further

purification. The pRGO was synthesized in accordance with a  pub-

lished procedure [31].  For comparison, graphene was prepared

using the similar procedure without KOH.

Phosphate buffer solution (PBS, 0.1 M,  pH 7.4) was  prepared by

mixing stock standard solutions of  NaH2PO4 and Na2HPO4, and

adjusting the pH with 0.1 M  NaOH to  7.4. Chitosan (deacetylation,

95%) and other chemicals were of analytical grade and used without

further purification, and all solutions were prepared with double

distilled water.

2.2. Electrode preparation and modification

Prior to modification, the glassy carbon electrode (GCE) was pol-

ished carefully to a  mirror-like state with 0.3 and 0.05 �m alumina

slurry and sequentially sonicated in  6 M  nitric acid, acetone and

double distilled water. Then the electrode was  rinsed with double

distilled water and allowed to dry at room temperature.

Chitosan solution (pH =  5.0, 1.0 mg  mL−1)  was  prepared accord-

ing to previous report [32].  2.0 mg pRGO was added to 1.0 mL  of

2.0 mg  mL−1 chitosan aqueous solution to form homogenous dis-

persion with sonication. The modified electrode was prepared by

a simple casting method as follows: initially, the pretreated GCE

was  modified by dropping 5.0 �L of the pRGO/chitosan solution

and allowed to be dried in  ambient air for 4 h to obtain pRGO-

CHIT/GCE modified electrode; then the obtained electrode was

coated with 5.0 �L AChE solutions (12.5 mU,  containing 5 mg  mL−1

BSA to maintain the stability of AChE), which were incubated at

25 ◦C for 30 min; after evaporation of water, the modified electrode

was  washed with PBS to remove the unbound AChE and the resulted

AChE-pRGO -CHIT/GCE was stored at 4 ◦C. To make a  comparison,

AChE-CHIT/GCE with the same quantities of AChE was  prepared by

using the similar procedure.

2.3. Measurement procedure

Inhibition of OPs: the proposed AChE-pRGO-CHIT/GCE was first

immersed in 0.1 M  PBS containing different concentrations of

standard carbaryl solution for 12 min  and then transferred to the

electrochemical cell of 20.0 mL  PBS containing 6.0  mM ATCl to study

the electrochemical response by  cyclic voltammetry between 0.1

and 1.0 V (vs. SCE). The inhibition of pesticide was  calculated as

follows: inhibition (%) =  (1 −  Ip,exp/Ip,control) ×  100, where Ip,control is

the peak current of ATCl on AChE- pRGO-CHIT/GCE and Ip,exp the

corresponding peak current of ATCl with pesticide inhibition.

Fig. 1. The HRTEM image of pRGO.

The apparent Michaelis–Menten constant (Km) of the biosensor

can be obtained from the typical current-time plot for the biosen-

sor at 750 mV  after the successive addition of ATCl to  0.1  M PBS

under stirring. So  the Km value which could give an indication of

the enzyme substrate kinetics for the biosensor was determined by

analysis of the slope and intercept for the plot of  the reciprocals of

the steady-state current versus ATCl concentration.

2.4. Instrumentation

The morphologies of the obtained pRGO were observed by

using a  transmission electron microscope (TEM, JEOL-JEM-1011).

Raman spectra were recorded on a  JobinYvon Lab RAMHR800

microscopic confocal Raman spectrometer by employing a laser

of 514 nm as incident light. The time for each measurement was

30 s and the spectra were recorded by accumulating the mea-

surement for three times. The electrochemical experiments were

performed with a CHI660 C electrochemical analyzer (Chen Hua

Instruments, Shanghai, China) with a conventional three-electrode

system where glassy carbon electrode (GCE, 3 mm  in  diameter),

a saturated calomel electrode (SCE) and platinum wire was  used

as working electrode, reference electrode and counter electrode,

respectively. EIS were performed in a 0.1  M  KCl solution containing

5.0 mM Fe(CN)6
3−/4− with a  frequency range from 0.1 Hz to 100 kHz

at 0.20 V, and the amplitude of the applied sine wave potential in

each case was  5 mV.

3. Results and discussion

3.1. Characterization of pRGO

The HRTEM (Fig. 1) showed that the edge had a  few irregularly

stacked layers and demonstrated that the pRGO sheets consisted

of three to seven layers. In contrast to Raman spectra of graphene

(Fig. 2a), the upshift of G-band and the downshift of D band for the

pRGO (Fig. 2b) could be  attributed to the existence of more pores

and edges [33,34].  It  was  also found that Raman spectrum of  pRGO

exhibited a  slightly increased area ratio of D/G relatively to  that of

graphene (from 1.37 to  1.44). This change might suggest a  decrease

in the average size of the sp2 domains for pRGO [35] and could be

well explained by  the creation of pores and edges in  pRGO.

3.2. Electrochemical impedance spectroscopy

EIS was  an effective tool for studying the interface properties

of surface-modified electrodes [36].  The Nyquist plot of  impedance

spectra included a  semicircle portion and a  linear portion, and the

diameter of the semicircular portion at higher frequencies was
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Fig. 2. Raman spectrum of  the pRGO in comparison with graphene.

Fig. 3. EIS of (a) bare GCE, (b) CHIT/GCE and (c) pRGO-CHIT/GCE in 0.1 M KCl con-

taining 5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6]. Inset: Equivalent circuit.

equal to the electron transfer resistance R2 which controlled the

electron transfer kinetics of  the redox probe at the electrode inter-

face [37–39]. Fig. 3 exhibited the EIS of different electrodes in 0.1 M

KCl with equimolar Fe(CN)6
3−/4− ions. The impedance spectrum

corresponding to each step was fitted in computer using Zview

obtained equivalent circuit (inset in Fig. 3)  includes the ohmic resis-

tance of the electrolyte (R1), the constant phase element (CPE), the

Warburg impedance (W1) and the charge transfer resistance (R2).

As can be seen in the fitting values reported in Table 1,  the R2 at the

pRGO-CHIT/GCE (Fig. 3c, 2.72 �cm2) was much smaller than that at

bare GCE (Fig. 3a, 20.76 �cm2)  and CHIT/GCE (Fig. 3b, 42.33 �cm2),

revealing that the pRGO could act as a  good electron-transfer inter-

face between the electrochemical probe and the electrode.

Table 1
Fitting values of the equivalent circuit elements.

bare GCE CHIT/GCE pRGO-CHIT/GCE

Capacitance, CPE (F/cm2) 1.65 × 10−5 1.54 ×  10−4 7.67 ×  10−6

Resistance, R1 (�cm2) 7.23 6.32 7.91

Resistance, R2 (�cm2) 20.76 42.33 2.72

Resistive warburg, W1-R

(�cm2)

372.25 675.98 240.14

Capacitive warburg, W1-T

(�cm2)

1.35 4.83 3.24

Fig. 4. (A) CV curves of (a) bare GCE, (b) AChE-pRGO-CHIT/GCE in 0.1 M PBS (pH 7.4),

(c)  pRGO -CHIT/GCE, (d) AChE-CHIT/GCE and (e) AChE-pRGO-CHIT/GCE in 0.1 M PBS

(pH 7.4) containing 6.0  mM ATCl. Scan rate: 100 mV  s−1.  (B) CV curves of AChE-pRGO-

CHIT/GCE in 0.1  M PBS (pH 7.4) containing 6.0 mM ATCl at different scan rates from

10 to 200 mV  s−1.  Inset: plots of peak current vs. scan rate.

3.3. Electrochemical behavior of AChE-pRGO-CHIT/GCE

The performance of  the fabricated biosensor during stepwise

modification was  determined by CV method firstly. Fig. 4A pre-

sented the CV curves of different electrodes in  the absence and

presence of ATCl. No peak was observed at different electrodes

in 0.1 M PBS without ATCl while an  irreversible oxidation peak

at 620 mV  was observed at AChE-pRGO-CHIT/GCE (curve e) after

6.0 mM ATCl was added, which was  corresponding to the oxidation

of thiocholine, hydrolysis product of ATCl catalyzed by immobilized

AChE [40,41].  Furthermore, the peak current of AChE to ATCl on the

pRGO-CHIT/GCE was  much higher than that on CHIT/GCE and the

peak potential shifted negatively 100 mV,  which was attributed to

the presence of pRGO providing a  conductive pathway for electron-

transfer [42,43] and decreasing the over-potential of  thiocholine

oxidation. The decrease of the over-potential is  beneficial for avoid-

ing interference from other electro-active species in biological

matrix. Therefore, the pRGO -CHIT/GCE electrode was  utilized for

OPs detection in  our bio-sensing experiments.

Moreover, the effect of scan rate on the CV response of immobi-

lized AChE was also investigated. As displayed in  Fig. 4B,  the peak

current increased while the peak potential shifted slightly with

the increase of the scan rate. The peak current exhibited a linear

dependence on the scan rates ranging from 10 to 200 mV  s−1 (inset
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Fig. 5. Effect of the pH (A) and the volume of immobilized AChE (B) on the amper-

ometric response.

in Fig. 4B), indicating a  typical surface-controlled electrode process

[41].

3.4. Optimization parameters of the biosensor performance

The bioactivity of the immobilized AChE depended on the solu-

tion pH. Fig. 5A showed the relationship between catalytic peak

current of the response of AChE to ATCl and solution pH.  Obviously,

the maximum peak current was obtained at about pH 7.4 in the pH

range from 5.7 to  8.0. This result was close to that previous report

of free AChE, indicating that pRGO sheets did not alter the optimal

pH for catalytic behavior of AChE and that the microenvironment

surrounded by the immobilized enzyme was easily accessed by the

substrate [44]. Thus, pH 7.4 was  used in  the detection solution.

Another important aspect for the preparation of biosensor was

the amount of AChE. The effect of the loading mass on the biosen-

sor ranging from 1 �L to  7 �L was investigated in 0.1 M PBS (pH 7.4)

containing 6.0 mM ATCl. As shown in Fig. 5B,  the current response

increased with increasing amount of AChE and reached the maxi-

mum  at about 5 �L, then decreased obviously when the amount of

AChE was increased further. The phenomenon could be attributed

to the higher resistance for the electrochemical processes which

was caused by the increase of AChE film’s thickness. Therefore, 5 �L

AChE was chosen as the optimal enzyme amount.

Fig. 6.  (A) The i-t curve at the AChE-pRGO-CHIT/GCE for successive addition of

ATCl  with stirring at  the applied potential of 750 mV.  Inset: the calibration plot

for ATCl determination. (B) The calibration plot for the ATCl sensor. Inset: the

Lineweaver–Burk plot of 1/Iss vs. 1/C.

3.5. Calibration plot of ATCl

The typical current-time response curve of the biosensor was

obtained by successive additions of the substrate into a  stirred

cell. As  displayed in  Fig. 6A, with the increasing concentration of

ATCl, the amperometric response increased linearly in the range

of 0.72–1.76 mM with a  correlation coefficient of  0.998 and then

tended to a plateau value, showing a  typical Michaelis–Menten

process (Fig. 6B). The apparent Km was  calculated to  be 0.73 mM

according to  the Lineweaver–Burk equation. This value was  much

lower than that of AChE adsorbed on a polyethyleneimine-modified

electrode (1.5 mM)  [45] and a  carbon nanotubes modified electrode

(1.75 mM)  [46],  indicating that the immobilized AChE possessed a

higher enzymatic activity and affinity for ATCl due to  the excellent

electron transfer channels of pRGO.

3.6. Effect of incubation time on inhibition

The inhibition time was  one of  the most influential parameters

in the pesticide analysis. Therefore, the dependence of the car-

baryl inhibition on incubation time was  also studied. As  shown in

Fig. 7,  carbaryl displayed an increasing inhibition to AChE with the

increase of immersion time, and when the incubation time was

longer than 12 min, the curve trended to a stable value, indicating

that the binding interaction with active target groups in the enzyme
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Fig. 7. Effect of incubation time on  the response of ATCl after the AChE-pRGO-

CHIT/GCE was  incubated with 0.3 �g mL−1 carbaryl solution.

Fig. 8. The Relationship between peak currents and concentrations of carbaryl.

Insets: calibration plots for carbaryl determination.

reached saturation. However, the maximum value of inhibition was

not 100%, which was likely attributed to  the binding equilibrium

between pesticides and binding sites in  the enzyme [47]. Thus, a

12 min  incubation time was used in subsequent experiments.

3.7. Detection of carbaryl

Based on the inhibition of OPs on the immobilized AChE activ-

ity, a simple and effective way for monitoring OPs was proposed.

As shown in Fig. 8, the inhibition of carbaryl was  proportional to

its concentration from 0.001 to 0.05 �g mL−1 with the sensitivity

of 1181.20 ng−1 mL and the regression coefficients of  0.999. The

detection limit is 0.5 ng mL−1 (3 × standard deviation of the blank

signal/sensitivity), which was comparable with those reported

electrochemical sensors [18,19].

3.8. Reactivation of the biosensor

It was  also observed that the as-prepared biosensor inhibited

by carbaryl within a certain concentration can resume 91.5% of its

original value after immersion in 0.1 M  PBS (pH 7.4) for 20 min,

indicating that PBS played an important role as a reagent for AChE

reactivation. Compared with the previously reported nucleophilic

Table 2
The intra-assay precision of  the biosensors.

electrode 1 2 3  4 5

inhibition (%) 49.32 54.02 50.46 52.27 56.89

RSD(%) 5.7

Table 3
The inter-assay precision of the biosensors.

electrode 1 2 3  4 5

inhibition (%)  57.22 58.50 52.25 47.85 50.69

RSD(%) 8.4

Fig. 9. CV curves of the AChE-pRGO-CHIT/GCE stored at 4 ◦C  for (a)  0, (b) 7,  (c) 20

days in 0.1  M PBS (pH 7.4) containing 6.0 mM ATCl.

compounds such as pralidoxime iodide as a  reagent of reactivation

[48],  this method was  simple and reliable.

3.9. Precision of measurements and stability of biosensor

The intra-assay precision of the biosensors was  evaluated by

assaying one enzyme electrode for five replicated determinations

in 6.0  mM ATCl after being immersed in 0.04 �g mL−1 of carbaryl for

12 min  (Table 2). Similarly, the inter-assay precision or fabrication

reproducibility was  estimated at five different electrodes (Table 3).

The RSD of intra-assay and inter-assay were found to  be 5.7% and

8.4%, respectively, indicating good reproducibility.

The long-term storage stability was  a critical issue for practi-

cal application of the proposed biosensor. Fig. 9 presented the CV

curves of the AChE-pRGO-CHIT/GCE stored at 4 ◦C for different time

in the presence of ATCl. No obvious decrease in the response of

ATCl was observed in  the first 7-day storage (curve b). After a  20-

day storage period (curve c), the sensor retained 83% of its initial

current response (curve a), indicating good stability of  biosensor.

4. Conclusions

We  have demonstrated a simple and efficient strategy for immo-

bilizing AChE and developed a  sensitive sensor for detection of

carbaryl pesticide by integrating pRGO nano-sheets. Due to  the

excellent electron-transfer channels of the support, the immobi-

lized AChE possesses higher enzymatic activity and affinity to ATCl.

Based on the change in  electrochemical response of enzymatic

activity induced by OPs pesticide, an electrochemical technique

with good reproducibility, stability and fast response for OPs  pes-

ticide is  successfully developed. With the development of  pRGO in

the application of carbaryl detection, we  expect that the functional
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pRGO will find important and widespread applications in other OPs

pesticide exposure.
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