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ABSTRACT: An ab initio theoretical investigation on the geometrical and
electronic structures and photoelectron spectroscopies (PES) of BAun

�/0 (n ¼ 1–4)
auroboranes has been performed in this work. Density functional theory and
coupled cluster method (CCSD(T)) calculations indicate that BAu

�=0
n (n ¼ 1–4)

clusters with n-Au terminals possess similar geometrical structures and bonding
patterns with the corresponding boron hydrides BH

�=0
n . The PES spectra of BAu�

n (n
¼ 1–4) anions have been simulated computationally to facilitate their future
experimental characterizations. In this series, the Td BAu�

4 anion appears to be
unique and particularly interesting: it possesses a perfect tetrahedral geometry and
has the highest vertical electron detachment energy (VDE ¼ 3.69 eV), largest HOMO-
LUMO gap (DEgap ¼ 3.0 eV), and the highest first excitation energy (Eex ¼ 2.18 eV).
The possibility to use the tetrahedral BAu�

4 unit as the building block of Liþ[BAu4]
�

ion-pair and other [BAu4]
�-containing inorganic solids is discussed. VC 2011 Wiley

Periodicals, Inc. Int J Quantum Chem 111: 4418–4424, 2011
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1. Introduction

A lthough Au, Cu, and Ag all belong to the
same column in the Periodic Table, gold dif-

fers dramatically from other coinage metals

because of its strong relativistic effect [1, 2] which

stabilizes the Au 6s orbital and destabilizes Au 5d

[3]. Au possesses the highest electronegativity

(2.4) in all metals, which is comparable with that

of H (2.2). Since the surprising experimentalCorrespondence to: S.-D. Li; e-mail: lisidian@yahoo.com
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discovery of H/AuPR3 analogy [4], various com-

pounds with 2c-2e N-Au and B-Au bonds have

been reported [5, 6]. More recently, the H/Au iso-

lobal relationship in silicon aurides Td SiAu
0=�
4 [7],

C2v Si2Au
0=�
2 , and C2h/C2v Si2Au�

4 [8] and hepta-

boron auride C2v B7Au
0=�
2 [9] were confirmed by

joint photoelectron spectroscopy (PES) and den-

sity functional theory investigations. Cage-like

BnAu2�
n (n ¼ 5–12) with n-Au terminals were pre-

dicted stable recently in theory [10]. Relativistic

pseudopotential calculations on the X-centered

XAumþ
n cluster cations (X ¼ B-N, Al-S, n ¼ 4–6)

and Au-bridged X���Au–Y Lewis acid-base pairs

were also reported [11]. Very recently, our group

presented an ab initio investigation on bridging

gold atoms in diboron aurides B2Au
�=0
n (n ¼ 1, 3,

5) and their B2HmAu�
n mixed analogues (m þ n ¼

3, 5) [12].
In this work, we present a detailed ab initio

investigation on the geometrical electronic struc-
tures of BAu

0=�
n series (n ¼ 1–4) at both density

functional theory and wave function theory lev-
els. The PES spectra of the anions are computa-
tionally simulated to facilitate their future experi-
mental characterizations. In the BAu�

n anions
(n ¼ 1–4), the perfect tetrahedral Td BAu�

4 proves
to have the highest vertical electron detachment
energy, the largest HOMO-LUMO gap, and the
biggest first excitation energy. The possibility to
use the tetrahedral BAu�

4 unit as the building
block of Liþ[BAu4]

� ion-pair and other inorganic
solids is discussed.

2. Theoretical Methods

Structural optimizations and vibrational analy-
ses were comparatively carried out using the
hybrid B3LYP [13] and PBE1PBE [14] methods.
PBE1PBE and B3LYP produced similar ground-
state structures and relative energies with slightly
different bond parameters. Relative energies for
the lower-lying isomers were further refined
using the coupled cluster method with triple exci-
tations (CCSD(T)) [15] at B3LYP structures. Natu-
ral resonance theory (NRT) was used to calculate
the bond orders and bond polarities. The Stutt-
gart quasi-relativistic pseudo-potential and the
basis set augmented with two f-type polarization
functions and one g-type polarization function
(Stuttgart_rsc_1997_ecpþ2f1g (a(f) ¼ 0.498, a(f) ¼

1.464, and a(g) ¼ 1.218) [16] were used for Au
and the augmented Dunning’s correlation consist-
ent basis sets aug-cc-pvTZ [17] for B, H, and Li.
The low-lying isomers of BAu�

n anions and the
ground-state structures of BAun neutrals (n ¼ 1–
4) are depicted in Figures 1 and 2, respectively.
The calculated bond orders and natural atomic
charges of BAu�

n (n ¼ 1–4) and LiBAu4 were
tabulated in Table I, with the ADE and VDE val-
ues of BAu�

n anions summarized in Table II. ADE
values were calculated as the energy differences
between the anion and its neutral molecule at
their ground-state structures, whereas VDEs cal-
culated as the energy differences between the
anion and the neutral at the ground-state struc-
ture of the anions. The valence molecular orbitals
of [BAu4]

� and [BH4]
� are compared in Figure 3.

The simulated PES spectra of BAu�
n (n ¼ 1–4)

obtained by using the time-dependent DFT
method (TDDFT) were shown in Figure 4. Figure
5 depicts the optimized structures of LiBAu4 and
LiBH4. All the calculations in this work were per-
formed using the Gaussian 03 program [18]. The
NBO5.0 [19] program was used to calculate the
bond orders and atomic charges.

3. Results and Discussion

3.1. GEOMETRIES AND BONDING PATTERNS
OF BAun

2/0 (n 5 1–4)

As shown in Figures 1 and 2, the BAu
�=0
n (n ¼

1–4) clusters with n-Au terminals possess similar
geometrical structures with the corresponding bo-
ron hydrides BH

�=0
n [20–22]. Low-spin electronic

states are found to be consistently favored in
BAu

�=0
n (n ¼ 1–4). The ground state of the BAu�

anion (2Rþ, 1) has the bond length of rB-Au ¼
1.99 Å and lies 1.42 eV lower than its quartet iso-
mer (4Rþ, 2) at CCSD(T), whereas the ground
state of the BAu neutral (1Rþ, 12) possesses
actually a BBAu triple bond with the bond
length of rB-Au ¼ 1.93 Å which is close to the
sum (1.96 Å) of the proposed triple-covalent radii
of B and Au [23]. BAu�

2 possesses a ground state
of C2v BAu�

2 (1A1) (3), which lies 0.98 eV and
1.98 eV lower than the singlet C1v BAu�

2 (
1Rþ

g )
(4) and triplet C2v BAu�

2 (3B1) (5) at CCSD(T)
level, respectively. On BAu�

3 , the slightly off-
planed C3v BAu�

3 (2A1) (6) is the ground state,
while the perfect planar D3h BAu�

3 (8) is a tran-
sition state due to Jahn-Teller effect. The second
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FIGURE 2. Ground-state geometries of BAun neutrals at B3LYP level. Bond lengths are indicated in angstroms and
angles in degrees. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIGURE 1. Low-lying isomers of BAu�n anions (n ¼ 1–4) at B3LYP with energies (DE) relative to the ground states
indicated in eV at CCSDT//B3LYP. Bond lengths are in angstroms and angles in degrees. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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lowest-lying isomer Cs (2A0) (7) lies 0.72 eV
higher in energy. As expected, the ground state
of D3h BAu3 neutral (14) indeed possesses a per-
fect triangular structure similar that of BH3 [20]
with a sp2 hybridized B at the center. Most inter-
estingly, the ground state of BAu�

4 (9) proves to
be a perfect tetrahedron with a Td symmetry
similar to Td BH�

4 . Our optimized B-Au bond
length of rB-Au ¼ 2.05 Å, which appears to be
close to the sum (2.09 Å) of the proposed single-
bond covalent radii of the B and Au [23], is
about 0.08 Å shorter than the corresponding
value of rB-Au ¼ 2.137 Å predicted at Hartree-
Fock level [11(a)]. Td BAu�

4 (9) is separated by
0.55 eV from the second lowest-lying isomer of
C2v BAu�

4 (
1A1) (10) and has the biggest HOMO-

LUMO energy gap of DEgap ¼ 3.0 eV in the
BAu�

n series.
As shown in Table I, the covalent contribu-

tions to the B-Au interactions increase con-
stantly in the BAu�

n series from n ¼ 1 to n ¼ 4.
B-Au bonds in Td BAu�

4 have the highest per-
centage of covalency (97%). The B-Au bonds in
BAu�

3 and BAu�
2 have the covalent contributions

of 71 and 63%, respectively. Obviously, these B-
Au bonds can be viewed as mainly covalent.
However, the B-Au bond in BAu� has the cova-
lent component of 41% and electrovalent contri-
bution of 59%, indicating that the B-Au interac-
tion in BAu� is mainly ionic. This situation can
be understood based on that fact that Au atom
carries about one third (q ¼ �0.34|e|, see Table
I) of the negative charge the BAu� anion
possesses.

In the BAu�
n series, the perfect tetrahedral Td

BAu�
4 appears to be unique and particularly inter-

esting. Figure 3 shows its four valence molecular
orbitals, which contains a triply degenerate HOMO
(t2) and a singlet HOMO-1 (a1). Td BAu�

4 has a
bonding pattern similar to that of Td BH�

4 , with a
sp3 hybridized B center surrounded by four Au
atoms to form four equivalent r single bonds.
However, there are subtle differences in orbital
compositions between B-Au and B-H r bonds in
Td BAu�

4 and Td BH�
4 due to the obvious relativis-

tic effects in Au. Td BAu�
4 possesses the orbital

hybridization of MOB-Au ¼ 0.707(sp3)B þ
0.708(sd0.13)Au and the corresponding atomic con-
tribution of 49.9%B þ 50.1%Au, with Au 6s

TABLE I
Full valency, covalency, and electrovalency indexes, the covalent percentages, and natural atomic
charges (q/|e|) calculated for BAun

2 anions and LiBAu4 neutral.

Isomers Atom Valency Covalency Electrovalency Covalent percentage q

1 C1v BAu
�(2Rþ) B 1.53 0.62 0.91 0.41 �0.66

Au 1.53 0.62 0.91 0.41 �0.34
3 C2v BAu

�
2 (

1A1) B 2.07 1.30 0.77 0.63 �0.50
Au 1.04 0.65 0.39 0.63 �0.25

6 C3v BAu
�
3 (

2A1) B 3.50 2.49 1.01 0.71 �0.74
Au 1.17 0.83 0.34 0.71 �0.09

9 Td BAu�4 (
1A1) B 4.00 3.87 0.13 0.97 �1.22

Au 1.00 0.97 0.03 0.97 �0.06
16 C3vLiBAu4 (1A1) B 3.89 3.57 0.32 0.92 �1.39

Au 1.00 0.81 0.19 0.81 þ0.23
Au0 0.99 0.92 0.07 0.93 þ0.11
Li 0.07 0.00 0.07 0.00 þ0.83

TABLE II
Calculated ADEs (eV) and VDEs (eV) of BAun

2 anions
(n 5 1–4) at B3LYP and CCSD(T)//B3LYP levels.
ADEs of the anions are equivalent to the electron
affinities of the corresponding neutrals.

B3LYP CCSD(T)//B3LYP

1 C1v BAu
�(2Rþ) ADE 0.87 0.66

VDE 0.89 0.68
3 C2v BAu

�
2 (

1A1) ADE 1.84 1.86
VDE 2.15 2.20

6 C3v BAu
�
3 (

2A1) ADEa 1.52 1.28
VDE 1.79 1.65

9 Td BAu�4 (
1A1) ADEb 3.12 3.06

VDE 3.57 3.69

a The final state corresponds to D3h BAu3(
1A1

0 ).
b The final state corresponds to D2d BAu4(

2B2).
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contributing 90.4% and Au 5d 9.3% to the Au-
based orbital, whereas Td BH�

4 has the orbital
hybridization of B-H ¼ 0.681(sp3)B þ 0.732sH and
the corresponding atomic contribution of 46.4%B þ
53.6%H, with the H-based orbital containing pure
H 1s contribution. Au 5d makes about 10% contri-
bution to the Au-based orbitals in BAu�, BAu�

2 ,
and BAu�

3 , too. The 10% Au 5d contribution to the
Au-based orbitals in BAu�

n series (n ¼ 1–4) gener-
ally agrees with the situation previously observed
in diboron aurides B2Au

�=0
n (n ¼ 1, 3, 5) [12].

3.2. ELECTRON DETACHMENT ENERGIES
AND B-Au SYMMETRICAL STRETCHING
VIBRATIONAL FREQUENCIES

As can be seen from Table II, B3LYP and
CCSD(T)//B3LYP methods agree well in predict-
ing the one-electron detachment energies of BAu�

n

anions. For BAu�, BAu�
2 , and BAu�

3 , the calcu-
lated ADEs and VDEs at CCSD(T) level lie
between 0.66 eV and 2.20 eV, whereas for BAu�

4 ,
the corresponding values are ADE ¼ 3.06 eV and
VDE ¼ 3.69 eV, respectively. Obviously, Td BAu�

4

has the highest one-electron detachment energy

and, therefore, possesses the highest electronic
stability in this series. The high stability of the
closed-shell Td BAu�

4 is clearly related with the
fact it has the same number of valence electrons
with the well-known methane Td CH4. The elec-
tronic binding energies of BAu�

n anions fall within
the energy range of the conventional excitation
laser (266 nm, 4.661 eV) in PES measurements [7–
9]. To facilitate future experiments, we also simu-
lated the PES spectra of BAu�

n (n ¼ 1–4) by using
TDDFT. As shown in Figure. 4, Td BAu�

4 has a
unique PES pattern in these anions: it has the
highest X-band (2T2) at 3.69 eV followed by a
group of closely-lying bands (A-E) between 5.8
and 6.6 eV, with an exceptionally wide X–A
energy gap of Eex ¼ 2.18 eV which corresponds to
the first excitation energy of the BAu4 neutral,
further supporting the high stability of Td BAu�

4 .
The highly symmetrical C3v BAu�

3 also possesses
a considerable X-A energy gap of Eex ¼ 1.81 eV.
The calculated Au-B symmetrical stretching vibra-
tional frequencies appeared to lie at 635, 801, 711,
and 623 cm�1 for C1v BAu (1Rþ), C2v BAu2 (2A1),
D3h BAu3 (1A1

0
), and D2d BAu4 (2B2), respectively.

These calculated values may help indentify these

FIGURE 3. Comparison of the four valence MOs responsible for the four equivalent r-bonds in Td [BAu4]
�(1A1)

and Td [BH4]
� (1A1) at B3LYP. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

LI AND LI

4422 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 111, NO. 15



auroboranes in future infrared and PES
measurements.

3.3. BAu�
4 UNIT IN LiBAu4 NEUTRAL

To further evaluate the stability of BAu�
4 , we

compare its atomization energy (AME) with the
corresponding value of BH�

4 at CCSD(T):

BAu�
4 ðTd

1A1Þ ! 4Auð2SÞ þ B�ð3PÞ
DE ¼ 271:7 kcal=mol

BH�
4 ðTd

1A1Þ ! 4Hð2SÞ þ B�ð3PÞ
DE ¼ 362:9 kcal=mol

The choice of B� monoanion is based upon the
fact that the B centers carry the extra electron in
both BAu�

4 and BH�
4 monoanions. Our CCSD(T)

values indicates that Td BAu�
4 possesses the posi-

tive atomization energy of AME ¼ 271.7 kcal/mol
and, therefore, should be thermodynamically sta-
ble (though less stable than the well-known BH�

4

[22] which has an AME ¼ 362.9 kcal/mol at the
same theoretical level). A closed-shell tetrahedral
BAu�

4 unit is expected to be further stabilized
when incorporated in solids with suitable coun-
terions (like Liþ) [24].

In the simplest case, it is true that the ground
state C3v LiBAu4 (16) has a very similar geometry
with that of C3v LiBH4 (17). The tetrahedral BAu�

4

unit is well maintained in C3v LiBAu4. The calcu-
lated natural atomic charge of qLi ¼ þ0.83 |e| indi-
cates that the Li atom donates its valence 2s1 elec-
tron almost completely to the BAu�

4 anionic unit,
and the interaction between Liþ and BAu�

4 unit is
basically ionic. Thus, LiBAu4 can be viewed essen-
tially as a Liþ[BAu4]

� ion-pair, presenting the pos-
sibility of synthesizing LiBAu4 and other [BAu4]

�-
containing inorganic solids in future experiments.

4. Summary

The structures and electronic characters of a se-
ries of auroboranes BAu

�=0
n (n ¼ 1–4) with one B

FIGURE 4. PES spectra of BAun
� (n ¼ 1–4) anions

simulated at TDDFT level.

FIGURE 5. Ground-state structures of LiBAu4 and
LiBH4 at B3LYP. Bond lengths are indicated in ang-
stroms. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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atom at the center have been investigated at ab
initio theoretical level. NRT analyses showed that
the B-Au interactions in BAu

�=0
n clusters (n ¼ 2–4)

are mainly covalent. The PES spectra of the BAu�
n

anions and the Au-B stretching vibrations of the
BAun neutrals (n ¼ 1–4) are calculated. Based on
the Au/H analogy, an interesting structural link
between LiBAu4 and LiBH4 is established. A tetra-
hedral BAu�

4 unit is predicted to serve as the
building block of Liþ[BAu4]

� air-pair and other
[BAu4]

�-containing inorganic solids.
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