An Ab Initio Theoretical Investigation on the Geometrical and Electronic Structures of $BAu_n^{-/0}$ (n = 1-4) Clusters

DA-ZHI LI,^{1,2} SI-DIAN LI^{1,3}

¹Institute of Molecular Science, Shanxi University, Taiyuan 030001, Shanxi, People's Republic of China ²Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, Shandong, People's Republic of China ³Institute of Materials Science and Department of Chemistry, Xinzhou Teachers' University, Xinzhou 034000, Shanxi, People's Republic of China

Received 23 October 2010; accepted 28 October 2010 Published online 18 January 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/qua.22993

ABSTRACT: An *ab initio* theoretical investigation on the geometrical and electronic structures and photoelectron spectroscopies (PES) of $BAu_n^{-/0}$ (n = 1-4) auroboranes has been performed in this work. Density functional theory and coupled cluster method (CCSD(T)) calculations indicate that $BAu_n^{-/0}$ (n = 1-4) clusters with n-Au terminals possess similar geometrical structures and bonding patterns with the corresponding boron hydrides $BH_n^{-/0}$. The PES spectra of BAu_n^- (n = 1-4) anions have been simulated computationally to facilitate their future experimental characterizations. In this series, the T_d BAu_4^- anion appears to be unique and particularly interesting: it possesses a perfect tetrahedral geometry and has the highest vertical electron detachment energy (VDE = 3.69 eV), largest HOMO-LUMO gap ($\Delta E_{gap} = 3.0 \text{ eV}$), and the highest first excitation energy ($E_{ex} = 2.18 \text{ eV}$). The possibility to use the tetrahedral BAu_4^- unit as the building block of Li⁺[BAu_4]⁻ ion-pair and other [BAu_4]⁻-containing inorganic solids is discussed. ©2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 4418–4424, 2011

Key words: auroboranes; *ab initio* calculations; geometrical structures; electronic structures; photoelectron spectroscopy

1. Introduction

Ithough Au, Cu, and Ag all belong to the same column in the Periodic Table, gold dif-

fers dramatically from other coinage metals because of its strong relativistic effect [1, 2] which stabilizes the Au 6s orbital and destabilizes Au 5d [3]. Au possesses the highest electronegativity (2.4) in all metals, which is comparable with that of H (2.2). Since the surprising experimental

International Journal of Quantum Chemistry, Vol 111, 4418–4424 (2011) © 2011 Wiley Periodicals, Inc.

Correspondence to: S.-D. Li; e-mail: lisidian@yahoo.com

discovery of H/AuPR₃ analogy [4], various compounds with 2c-2e N-Au and B-Au bonds have been reported [5, 6]. More recently, the H/Au isolobal relationship in silicon aurides $T_d SiAu_4^{0/-}$ [7], C_{2v} Si₂Au₂^{0/-}, and C_{2h}/C_{2v} Si₂Au₄⁻ [8] and hepta-boron auride C_{2v} B₇Au₂^{0/-} [9] were confirmed by joint photoelectron spectroscopy (PES) and density functional theory investigations. Cage-like $B_n A u_n^{2-}$ (*n* = 5–12) with n-Au terminals were predicted stable recently in theory [10]. Relativistic pseudopotential calculations on the X-centered XAu_n^{m+} cluster cations (X = B-N, Al-S, n = 4-6) and Au-bridged X…Au-Y Lewis acid-base pairs were also reported [11]. Very recently, our group presented an *ab initio* investigation on bridging gold atoms in diboron aurides $B_2Au_n^{-/0}$ (n = 1, 3,5) and their $B_2H_mAu_n^-$ mixed analogues (m + n =3, 5) [12].

In this work, we present a detailed *ab initio* investigation on the geometrical electronic structures of $BAu_n^{0/-}$ series (n = 1-4) at both density functional theory and wave function theory levels. The PES spectra of the anions are computationally simulated to facilitate their future experimental characterizations. In the BAu_n^- anions (n = 1-4), the perfect tetrahedral $T_d BAu_4^-$ proves to have the highest vertical electron detachment energy, the largest HOMO-LUMO gap, and the biggest first excitation energy. The possibility to use the tetrahedral BAu_4^- unit as the building block of Li⁺[BAu_4]⁻ ion-pair and other inorganic solids is discussed.

2. Theoretical Methods

Structural optimizations and vibrational analyses were comparatively carried out using the hybrid B3LYP [13] and PBE1PBE [14] methods. PBE1PBE and B3LYP produced similar groundstate structures and relative energies with slightly different bond parameters. Relative energies for the lower-lying isomers were further refined using the coupled cluster method with triple excitations (CCSD(T)) [15] at B3LYP structures. Natural resonance theory (NRT) was used to calculate the bond orders and bond polarities. The Stuttgart quasi-relativistic pseudo-potential and the basis set augmented with two f-type polarization functions and one g-type polarization function (Stuttgart_rsc_1997_ecp+2f1g (α (f) = 0.498, α (f) =

1.464, and $\alpha(g) = 1.218$ [16] were used for Au and the augmented Dunning's correlation consistent basis sets aug-cc-pvTZ [17] for B, H, and Li. The low-lying isomers of BAu_n^- anions and the ground-state structures of BAu_n neutrals (n = 1-4) are depicted in Figures 1 and 2, respectively. The calculated bond orders and natural atomic charges of BAu_n^- (n = 1-4) and LiBAu₄ were tabulated in Table I, with the ADE and VDE values of BAu_n^- anions summarized in Table II. ADE values were calculated as the energy differences between the anion and its neutral molecule at their ground-state structures, whereas VDEs calculated as the energy differences between the anion and the neutral at the ground-state structure of the anions. The valence molecular orbitals of $[BAu_4]^-$ and $[BH_4]^-$ are compared in Figure 3. The simulated PES spectra of BAu_n^- (n = 1-4) obtained by using the time-dependent DFT method (TDDFT) were shown in Figure 4. Figure 5 depicts the optimized structures of LiBAu₄ and LiBH₄. All the calculations in this work were performed using the Gaussian 03 program [18]. The NBO5.0 [19] program was used to calculate the bond orders and atomic charges.

3. Results and Discussion

3.1. GEOMETRIES AND BONDING PATTERNS OF $BAu_n^{-/0}$ (n = 1-4)

As shown in Figures 1 and 2, the BAu_n^{-/0} (n =1-4) clusters with n-Au terminals possess similar geometrical structures with the corresponding boron hydrides $BH_n^{-/0}$ [20–22]. Low-spin electronic states are found to be consistently favored in $BAu_n^{-/0}$ (n = 1–4). The ground state of the $BAu^$ anion $(^{2}\Sigma^{+}, 1)$ has the bond length of $r_{\text{B-Au}} =$ 1.99 Å and lies 1.42 eV lower than its quartet isomer (${}^{4}\Sigma^{+}$, 2) at CCSD(T), whereas the ground state of the BAu neutral (${}^{1}\Sigma^{+}$, **12**) possesses actually a B≡Au triple bond with the bond length of $r_{\text{B-Au}} = 1.93$ Å which is close to the sum (1.96 Å) of the proposed triple-covalent radii of B and Au [23]. BAu2 possesses a ground state of C_{2v} BAu₂⁻ (¹A₁) (3), which lies 0.98 eV and 1.98 eV lower than the singlet $C_{\infty v}$ BAu₂⁻⁽¹ Σ_{σ}^{+}) (4) and triplet C_{2v} BAu_2^- (3B_1) (5) at $CCSD(\tilde{T})$ level, respectively. On BAu_3^- , the slightly offplaned $C_{3v} BAu_3^-$ (²A₁) (6) is the ground state, while the perfect planar $D_{3h} BAu_3^-$ (8) is a transition state due to Jahn-Teller effect. The second

LI AND LI

FIGURE 1. Low-lying isomers of BAu_n^- anions (n = 1-4) at B3LYP with energies (ΔE) relative to the ground states indicated in eV at CCSDT//B3LYP. Bond lengths are in angstroms and angles in degrees. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIGURE 2. Ground-state geometries of BAu_n neutrals at B3LYP level. Bond lengths are indicated in angstroms and angles in degrees. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I

Full valency, covalency, and electrovalency indexes, the covalent percentages, and natural atomic charges (q/|e|) calculated for BAu_n⁻ anions and LiBAu₄ neutral.

Isomers	Atom	Valency	Covalency	Electrovalency	Covalent percentage	q
1 $C_{\infty v}$ BAu ⁻ (² Σ^+)	В	1.53	0.62	0.91	0.41	-0.66
	Au	1.53	0.62	0.91	0.41	-0.34
3 C _{2v} BAu ₂ ⁻ (¹ A ₁)	В	2.07	1.30	0.77	0.63	-0.50
	Au	1.04	0.65	0.39	0.63	-0.25
6 C _{3v} BAu ₃ ⁻ (² A ₁)	В	3.50	2.49	1.01	0.71	-0.74
	Au	1.17	0.83	0.34	0.71	-0.09
9 T _d BAu ₄ ⁻ (¹ A ₁)	В	4.00	3.87	0.13	0.97	-1.22
	Au	1.00	0.97	0.03	0.97	-0.06
16 C _{3v} LiBAu ₄ (¹ A ₁)	В	3.89	3.57	0.32	0.92	-1.39
	Au	1.00	0.81	0.19	0.81	+0.23
	Au′	0.99	0.92	0.07	0.93	+0.11
	Li	0.07	0.00	0.07	0.00	+0.83

lowest-lying isomer C_s (²A') (7) lies 0.72 eV higher in energy. As expected, the ground state of D_{3h} BAu₃ neutral (14) indeed possesses a perfect triangular structure similar that of BH₃ [20] with a sp² hybridized B at the center. Most interestingly, the ground state of BAu_4^- (9) proves to be a perfect tetrahedron with a T_d symmetry similar to T_d BH₄⁻. Our optimized B-Au bond length of $r_{\text{B-Au}} = 2.05$ Å, which appears to be close to the sum (2.09 Å) of the proposed singlebond covalent radii of the B and Au [23], is about 0.08 Å shorter than the corresponding value of $r_{\text{B-Au}} = 2.137$ Å predicted at Hartree-Fock level [11(a)]. $T_d BAu_4^-$ (9) is separated by 0.55 eV from the second lowest-lying isomer of C_{2v} BAu₄⁻⁽¹A₁) (10) and has the biggest HOMO-LUMO energy gap of $\Delta E_{gap} = 3.0$ eV in the BAu_n^- series.

As shown in Table I, the covalent contributions to the B-Au interactions increase constantly in the BAu_n⁻ series from n = 1 to n = 4. B-Au bonds in T_d BAu₄⁻ have the highest percentage of covalency (97%). The B-Au bonds in BAu_3^- and BAu_2^- have the covalent contributions of 71 and 63%, respectively. Obviously, these B-Au bonds can be viewed as mainly covalent. However, the B-Au bond in BAu⁻ has the covalent component of 41% and electrovalent contribution of 59%, indicating that the B-Au interaction in BAu⁻ is mainly ionic. This situation can be understood based on that fact that Au atom carries about one third (q = -0.34 | e |, see Table I) of the negative charge the BAu⁻ anion possesses.

In the BAu⁻_n series, the perfect tetrahedral T_d BAu₄⁻ appears to be unique and particularly interesting. Figure 3 shows its four valence molecular orbitals, which contains a triply degenerate HOMO (t₂) and a singlet HOMO-1 (a₁). $T_d BAu_4^-$ has a bonding pattern similar to that of T_d BH₄⁻, with a sp³ hybridized B center surrounded by four Au atoms to form four equivalent σ single bonds. However, there are subtle differences in orbital compositions between B-Au and B-H σ bonds in $T_d BAu_4^-$ and $T_d BH_4^-$ due to the obvious relativistic effects in Au. T_d BAu₄⁻ possesses the orbital hybridization of $MO_{B-Au} = 0.707(sp^3)_B$ +0.708(sd^{0.13})_{Au} and the corresponding atomic contribution of 49.9%B + 50.1%Au, with Au 6s

TABLE II

Calculated ADEs (eV) and VDEs (eV) of BAu_n^- anions (n = 1-4) at B3LYP and CCSD(T)//B3LYP levels. ADEs of the anions are equivalent to the electron affinities of the corresponding neutrals.

		B3LYP	CCSD(T)//B3LYP
1 $C_{\infty v}$ BAu ⁻ (² Σ ⁺)	ADE	0.87	0.66
	VDE	0.89	0.68
3 C _{2v} BAu ₂ ⁻ (¹ A ₁)	ADE	1.84	1.86
2 · · ·	VDE	2.15	2.20
6 C _{3v} BAu ₃ ⁻ (² A ₁)	ADE ^a	1.52	1.28
0.0	VDE	1.79	1.65
9 T _d BAu ₄ ⁻ (¹ A ₁)	ADE ^b	3.12	3.06
	VDE	3.57	3.69

^a The final state corresponds to $D_{3h} BAu_3(^{1}A'_1)$.

^b The final state corresponds to D_{2d} BAu₄(²B₂).

LI AND LI

T_d [BAu₄]

FIGURE 3. Comparison of the four valence MOs responsible for the four equivalent σ -bonds in T_d [BAu₄]⁻(¹A₁) and T_d [BH₄]⁻ (¹A₁) at B3LYP. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

contributing 90.4% and Au 5d 9.3% to the Aubased orbital, whereas $T_d BH_4^-$ has the orbital hybridization of B-H = $0.681(sp^3)_B + 0.732s_H$ and the corresponding atomic contribution of 46.4%B + 53.6%H, with the H-based orbital containing pure H 1s contribution. Au 5d makes about 10% contribution to the Au-based orbitals in BAu⁻, BAu⁻₂, and BAu⁻₃, too. The 10% Au 5d contribution to the Au-based orbitals in BAu⁻ series (n = 1-4) generally agrees with the situation previously observed in diboron aurides $B_2Au_n^{-/0}$ (n = 1, 3, 5) [12].

3.2. ELECTRON DETACHMENT ENERGIES AND B-AU SYMMETRICAL STRETCHING VIBRATIONAL FREQUENCIES

As can be seen from Table II, B3LYP and CCSD(T)//B3LYP methods agree well in predicting the one-electron detachment energies of BAu_n^- anions. For BAu^- , BAu_2^- , and BAu_3^- , the calculated ADEs and VDEs at CCSD(T) level lie between 0.66 eV and 2.20 eV, whereas for BAu_4^- , the corresponding values are ADE = 3.06 eV and VDE = 3.69 eV, respectively. Obviously, $T_d BAu_4^-$ has the highest one-electron detachment energy

and, therefore, possesses the highest electronic stability in this series. The high stability of the closed-shell T_d BAu₄⁻ is clearly related with the fact it has the same number of valence electrons with the well-known methane T_d CH₄. The electronic binding energies of BAu_n^- anions fall within the energy range of the conventional excitation laser (266 nm, 4.661 eV) in PES measurements [7-9]. To facilitate future experiments, we also simulated the PES spectra of $BAu_n^-(n = 1-4)$ by using TDDFT. As shown in Figure. 4, $T_d BAu_4^-$ has a unique PES pattern in these anions: it has the highest X-band (²T₂) at 3.69 eV followed by a group of closely-lying bands (A-E) between 5.8 and 6.6 eV, with an exceptionally wide X-A energy gap of $E_{ex} = 2.18$ eV which corresponds to the first excitation energy of the BAu₄ neutral, further supporting the high stability of T_d BAu₄. The highly symmetrical C_{3v} BAu₃⁻ also possesses a considerable X-A energy gap of $E_{ex} = 1.81$ eV. The calculated Au-B symmetrical stretching vibrational frequencies appeared to lie at 635, 801, 711, and 623 cm⁻¹ for $C_{\infty v}$ BAu (¹ Σ^+), C_{2v} BAu₂ (²A₁), D_{3h} BAu₃ (¹A₁), and D_{2d} BAu₄ (²B₂), respectively. These calculated values may help indentify these

FIGURE 4. PES spectra of BAu_n^- (n = 1-4) anions simulated at TDDFT level.

auroboranes in future infrared and PES measurements.

3.3. BAu₄⁻ UNIT IN LIBAu₄ NEUTRAL

To further evaluate the stability of BAu_4^- , we compare its atomization energy (AME) with the corresponding value of BH_4^- at CCSD(T):

$$\begin{split} BAu_4^-(T_d{}^1A_1) &\to 4Au({}^2S) + B^-({}^3P) \\ &\Delta E = 271.7\,kcal/mol \\ BH_4^-(T_d{}^1A_1) &\to 4H({}^2S) + B^-({}^3P) \\ &\Delta E = 362.9\,kcal/mol \end{split}$$

The choice of B⁻ monoanion is based upon the fact that the B centers carry the extra electron in both BAu_4^- and BH_4^- monoanions. Our CCSD(T) values indicates that $T_d BAu_4^-$ possesses the positive atomization energy of AME = 271.7 kcal/mol and, therefore, should be thermodynamically stable (though less stable than the well-known BH_4^- [22] which has an AME = 362.9 kcal/mol at the same theoretical level). A closed-shell tetrahedral BAu_4^- unit is expected to be further stabilized when incorporated in solids with suitable counterions (like Li⁺) [24].

In the simplest case, it is true that the ground state C_{3v} LiBAu₄ (**16**) has a very similar geometry with that of C_{3v} LiBH₄ (**17**). The tetrahedral BAu₄⁻ unit is well maintained in C_{3v} LiBAu₄. The calculated natural atomic charge of $q_{Li} = +0.83 |e|$ indicates that the Li atom donates its valence $2s^1$ electron almost completely to the BAu₄⁻ anionic unit, and the interaction between Li⁺ and BAu₄⁻ unit is basically ionic. Thus, LiBAu₄ can be viewed essentially as a Li⁺[BAu₄]⁻ ion-pair, presenting the possibility of synthesizing LiBAu₄ and other [BAu₄]⁻ containing inorganic solids in future experiments.

4. Summary

The structures and electronic characters of a series of auroboranes $BAu_n^{-/0}$ (n = 1–4) with one B

FIGURE 5. Ground-state structures of LiBAu₄ and LiBH₄ at B3LYP. Bond lengths are indicated in angstroms. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

LI AND LI

atom at the center have been investigated at *ab initio* theoretical level. NRT analyses showed that the B-Au interactions in $BAu_n^{-/0}$ clusters (n = 2-4) are mainly covalent. The PES spectra of the BAu_n^- anions and the Au-B stretching vibrations of the BAu_n neutrals (n = 1-4) are calculated. Based on the Au/H analogy, an interesting structural link between LiBAu₄ and LiBH₄ is established. A tetrahedral BAu₄⁻ unit is predicted to serve as the building block of Li⁺[BAu₄]⁻ air-pair and other [BAu₄]⁻-containing inorganic solids.

References

- 1. Pyykko, P. Angew Chem Int Ed 2002, 41, 3573 and references therein.
- Cotton, F. A.; Wikinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999.
- 3. Desclaux, J. P.; Pyykko, P. Chem Phys Lett 1976, 39, 300.
- (a) Hall, K. P.; Mingos, D. M. P. Prog Inorg Chem 1984, 32, 237;
 (b) Burdett, J. K.; Eisenstein, O.; Schweizer, W. B. Inorg Chem 1994, 33, 3261.
- 5. Lauher, J. W.; Wald, K. J Am Chem Soc 1981, 103, 7648.
- (a) Scherbaum, F.; Grohmann, A.; Muller, G.; Schmidbaur, H. Angew Chem Int Ed 1989, 28, 463; (b) Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140; (c) Haeberlen, O. D.; Schmidbaur, H.; Roesch, N. J Am Chem Soc 1994, 116, 8241; (d) Blumenthal, A.; Beruda, H.; Schmidbaur, H. J Chem Soc Chem Commun 1993, 1005; (e) Yang, F.; Han, R. S.; Tong, N. H.; Guo, W. Chin Phys Lett 2002, 19, 1336.
- Kiran, B.; Li, X.; Zhai, H.-J.; Cui, L.-F.; Wang, L.-S. Angew Chem Int Ed 2004, 43, 2125.
- (a) Li, X.; Kiran, B.; Wang, L.-S. J Phys Chem A 2005, 109, 4366;
 (b) Kiran, B.; Li, X.; Zhai, H.-J.; Wang, L.-S. J Chem Phys 2006, 125, 133204.
- Zhai, H.-J.; Wang, L.-S.; Zubarev, D. Y.; Boldyrev, A. I. J Phys Chem A 2006, 110, 1689.
- 10. Zubarev, D. Y.; Li, J.; Wang, L.-S.; Boldyrev, A.-I. Inorg Chem 2006, 45, 5269.
- (a) Pyykko, P.; Zhao, Y. Chem Phys Lett 1991, 117, 103;
 (b) Avramopoulos, A.; Papadopoulos, M. G.; Sadlej, A. J Chem Phys Lett 2003, 370, 765.
- Yao, W.-Z.; Li, D.-Z.; Li, S.-D. J Comput Chem 2010; DOI 10.1002/jcc.21602.

- (a) Becke, A. D. J Chem Phys 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865
- (a) Cizek, J. Adv Chem Phys 1969, 14, 35; (b) Scuseria, G.
 E.; Schaefer, H. F. J Chem Phys 1989, 90, 3700; (c) Pople, J.
 A.; Head-Gordon, M.; Raghavachari, K. J Chem Phys 1987, 87, 5968.
- (a) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J Chem Phys 1987, 86, 866; (b) Martin, J. M. L.; Sundermann, A. J Chem Phys 2001, 114, 3408.
- 17. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J Chem Phys 1992, 96, 6796.
- 18. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A; Gaussian, Inc.: Pittsburgh, PA, 2003.
- Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical Chemistry Institute: University of Wisconsin: Madison, WI, 2001.
- 20. David, F.; David, A. D. J Phys Chem A 1998, 102, 7053.
- 21. Palke, W. E.; Lipscomb, W. N. J Am Chem Soc 1966, 88, 2384.
- Krogh-Jespersen, M.-B., Chandrasekhar, J.; Wiirthwein, E.-U.; Collins, J. B.; Schleyer, P.V. R. J Am Chem Soc 1980, 102, 2263.
- (a) Pyykk, P.; Riedel, S.; Patzschke, M. Chem Eur J 2005, 11, 3511; (b) Pyykko, P.; Atsumi, M. Chem Eur J 2009, 15, 12770.
- 24. Li, J.; Li, X.; Zhai, H.-J.; Wang, L.-S. Science 2003, 299, 864.