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Abstract
B-C binarymonolayers and fullerenes (borafullerenes) have received considerable attention in recent years. Inspired by the newly
reported B4C3 semiconducting boron carbide monolayer isovalent to graphene (Tian et al., Nanoscale, 2019, 11, 11099), we
predict herein at density functional theory level a new class of borafullerenes (1–8) following the isolated B4C3 hexagonal
pyramid rule. The spherically aromatic borafullerenesC5hB20C35 (1),C5 B20C45 (2),C5hB20C55 (3), andC5 B20C65 (4) isovalent
to C50, C60, C70, and C80, respectively, possess five isolated B4C3 hexagonal pyramids evenly distributed on the waist around the
C5 molecular axis, while S10 B40C50 (5),C5 B40C60 (6), S10 B40C70 (7), andC5 B40C80 (8) encompass ten isolated B4C3 pyramids
symmetrically distributed on the cage surface. Detailed orbital and bonding analyses indicate that these borafullerenes follow
similar σ and π-bonding patterns with their fullerene analogues, with three delocalized 7c-2e π bonds forming a local π-aromatic
system over each isolated B4C3 hexagonal pyramid. The calculated formation energies of the (B4C3)nC60-6n (n = 1–5) series
isovalent to C60 appear to increase almost linearly with the number of isolated B4C3 pyramids in the system. The IR, Raman, and
UV-vis spectra of the prototypical B20C45 (2) are theoretically simulated to facilitate its future spectral characterization.
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Introduction

C60 has played a pioneering role in nanoscience and nano-
technology ever since its discovery in 1985 [1–3]. One way
to enrich the chemistry of fullerene is to substitute carbon
atoms in fullerenes with atoms of other elements to form
heterofullerenes. With similar atomic size and bonding capac-
ity with carbon, boron and nitrogen serve as typical doping
atoms in fullerenes to form borafullerenes and azafullerenes,

respectively. Macroscopic syntheses of azafullerenes were re-
alized in 1995 [4, 5]. However, relatively little experimental
attention had been paid to borafullerenes before 2013 [6–9].
The first experimental observation of BnC60 – n

borafullerenes (n = 1–6) in gas phase by laser vaporization
was reported in 1991, with boron-doped 70-atom clusters
also particularly abundant [6, 7]. A major breakthrough in
facile synthesis of C59B borafullerene by atom exchange
resulting from exposure of C60 to boron vapor was reported
in 2013 [9]. Theoretical investigations on carbon-rich
borafullerenes include Cn− 1B (n = 60, 180, 240, 420, 540,
720, 780), B12C48, and BnC60− n (n ≤ 12) [10–17]. Using a
numerical atomic orbital density functional theory, Garg et al.
suggested that boron atoms in BnC60− n (n = 1–12) distribute
themselves in a way that a pentagon ring does not contain
more than one B atom and a hexagon not more than two B
atoms (at nonadjacent sites) [16]. Mohr and coworkers pre-
dicted “patched” structural motifs with boron aggregations
which turned out to be much more stable than the “diluted”
structures for B12C48 and B12C50 in 2014 [17]. Our group
predicted in 2018 a series of B40Cn (n = 30, 40, and 50)
borafullerenes with higher boron contents featuring a B30

boron double-chain nano-ring at the equator [18]. Utilizing
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the isovalent relationship between the B-centered C3v

B4C3H6 and benzene (D6h C6H6) (Fig. 1a) which have the
same numbers of valence electrons, similar geometrical and
electronic structures, and similar π-bonding patterns, we pre-
dicted very recently a highly stable B4C3 semiconducting
boron carbide monolayer (Pmn21) composed of isolated
B4C3 hexagonal pyramids with the direct bandgap of
2.73 eV [19]. Such a slightly buckled B4C3 boragraphene
isovalent to graphene appears to be even more stable than
the experimentally synthesized BC3 monolayer at first-
principles theory level, raising the possibility to form a series
of stable cage-like borafullerenes isovalent to corresponding
fullerenes with isolated B4C3 hexagonal pyramids on the
cage surface.

Keeping the inspiration in mind, we perform an exten-
sive density functional theory (DFT) investigation in this
work on the structures and bonding patterns of a new

class of borafullerenes isovalent to their fullerene ana-
logues conforming to the isolated B4C3 hexagonal pyramid
rule. The obtained C5h B20C35 (1), C5 B20C45 (2), C5h

B20C55 (3), and C5 B20C65 (4) (Fig. 1b) feature five iso-
lated B-centered B4C3 hexagonal pyramids evenly distrib-
uted on the waist, with three delocalized 7c-2e π bonds
forming a local π-aromatic system over each isolated
B4C3 hexagonal pyramid. Bigger borafullerenes S10
B40C50 (5), C5 B40C60 (6), S10 B40C70 (7), and C5

B40C80 (8) (Fig. 1c) following the same structural and
bonding patterns are also predicted.

Methods

The initial high-symmetry C5h B20C35 (1), C5 B20C45 (2),
C5h B20C55 (3), C5 B20C65 (4), S10 B40C50 (5), C5 B40C60

Fig. 1 Structures and delocalized π-bonding patterns of the isovalent C3v

B4C3H6 andD6h C6H6 (a) and the optimized structures ofC5h B20C35 (1),
C5 B20C45 (2), C5h B20C55 (3), and C5 B20C65 (4) at PBE0/6–311 + G(d)

level (b) and S10 B40C50 (5),C5 B40C60 (6), S10 B40C70 (7), andC5 B40C80

(8) at PBE0/6–31 + G(d) (c), with B atoms in red, C atoms in gray, and H
atoms in white
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(6), S10 B40C70 (7), and C5 B40C80 (8) were constructed via
isovalent substitutions from their fullerene counterparts D5h

C50, Ih C60, D5h C70, D5d C80, D5d C80, D5h C90, D5d C100,
and D5h C110, respectively. Extensive global searches were
performed on the prototypical B20C45 ((B4C3)5C30) using
both the TGMin program [20–22] and minima hoping
(MH) method [23, 24], with more than 3000 low-lying sta-
tionary points probed on the potential energy surface at PBE
level. The low-lying isomers thus obtained were then fully
re-optimized at the hybridized DFT-PBE0 level with the
basis sets of 6–31 + G(d) and 6–311 + G(d), respectively
[25, 26]. The PBE0 functional has been demonstrated to
be reliable for boron clusters in comparison with experi-
ments or more accurate ab initio calculations [27–31].
Detailed bonding analyses were performed using the adap-
tive natural density partitioning (AdNDP) [32–34] method at
PBE0/6-31G level. Nucleus-independent chemical shifts [35,
36] were calculated at the cage centers to assess the spher-
ical aromaticity of these borafullerenes. The IR and Raman
spectra of B20C45 (2) were simulated at PBE0/6–31 + G(d)
level and UV-vis absorption spectrum calculated using the
time-dependent DFT approach (TD-DFT) [37, 38]. Born–
Oppenheimer molecular dynamics (BOMD) simulations
were performed on B20C35 (1), B20C45 (2), B20C55 (3), and
B20C65 (4) for 30 ps at 500 K, 800 K, and 1500 K using the
CP2K software package [39]. All calculations in this work
were performed using the Gaussian 09 package [40].

Results and discussion

Structures and stabilities

We start from B4C57 (I) ((B4C3)C54) (Fig. 2), the smallest
borafullerene concerned in this works. Various isomers in
different structural motifs were constructed and compared in
Fig. S1. The high-symmetry C3 B4C57 (I) constructed by
isovalent substitution of one C6 hexagon in Ih C60 with a B-
filled B4C3 hexagonal pyramid (B4C3-HP) appears to be the
most stable isomer obtained. As a true minimum with the
lowest vibrational frequency of νmin = 253 cm−1 at PBE0/6–
31 + G(d) level, it lies at least 1.43 eV lower than other low-
lying isomers (Fig. S1), indicating that the B4C3-HP unit with
a slightly inward buckled hexa-coordinate B atom at the center
(η6-B) is well maintained in (B4C3)C54 during structural opti-
mizations due to its unique electronic configuration. Figure 3a
indicates that the B-centered quasi-planar C3v B4C3H6 pos-
sesses three delocalized 7c-2e π bonds over the bowl-shaped
B4C3-HP framework, similar to the typical π-bonding pattern
of benzene (C6H6) [19]. Such a bonding pattern renders π
aromaticity to C3v B4C3H6 (Fig. 1a). The high stability of C3

(B4C3)C54 (I) can be understood based on the fact that its
formation with respect to C60 + (4B − 3C) = (B4C3)C54 is a
C6→B4C3 isovalent substitution process from Ih C60. With
one more C6 hexagon in (B4C3)C54 (I) substituted by a second
B4C3-HP unit, C1 (B4C3)2C48 (B8C54) (II) with two isolated

Fig. 2 Optimized structures (a) and calculated formation energies of C3 (B4C3)C54, C1 (B4C3)2C48, C1 (B4C3)3C42, C1 (B4C3)4C36, and C5 (B4C3)5C30

(b) at PBE0/6–31 + G(d) level
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B4C3-HPs interconnected by a C–B bond turns out to be the
most stable isomer obtained lying at least 0.10 eV lower than
other low-lying isomers in different structural motifs (Fig. S2),
with νmin = 241 cm−1.

More encouragingly, the high-symmetry axially chiral C5

B20C45 (2) ((B4C3)5C30) constructed by consecutive isovalent
substitutions of five C6 hexagons in C60 with five isolated
B4C3-HP units turned out to be most stable structure obtained

in the 3000 isomers probed in this work (Fig. 1b and Fig. S3).
C5 B20C45 (2) is a true minimum of B20C45 with νmin =
217 cm−1 though we cannot guarantee that it is the global
minimum at this stage because of the extremely complicated
potential energy surface of the binary system. It features five
isolated B4C3-HPs evenly distributed on the waist around the
C5 molecular axis interconnected by five B–C σ bonds be-
tween them on the equator, with one bowl-shaped C10 cap on

Fig. 3 AdNDP bonding patterns of C3v B4C3H6 (a), C5 B20C45 (2) (b), and C5h B20C55 (3) (c), with the occupation numbers (ONs) indicated
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the top and one bowl-shaped C20 cap at bottom. It therefore
follows the isolated B4C3 hexagonal pyramid rule (IHPR),
with five equivalent η6-B atoms located at the centers of five
isolated B4C3-HPs. As shown in Fig. S3, the second isomerC1

B20C45 with three isolated B4C3-HPs on the waist and two
isolated B4C3-HPs at the bottomwith the small relative energy
of 0.03 eV is practically iso-energetic with C5 B20C45 (2), the
third isomer C1 B20C45 with four isolated B4C3-HPs on the
waist and one isolated B4C3-HP at the bottom lies 0.16 eV
higher in energy, while all the other low-lying isomers appear
to be at least 0.19 eV less stable than B20C45 (2). Interestingly,
all the fifteen lowest-lying isomers of B20C45 in different
structural motifs within 0.47 eV turned out to conform to the
IHPR rule, further indicating the importance of the IHPR rule
in these borafullerenes.

Similarly, the high-symmetry borafullerenes C5h B20C35

(1), C5h B20C55 (3), C5 B20C65 (4) (Fig. 1b), S10 B40C50 (5),
C5 B40C60 (6), S10 B40C70 (7), and C5 B40C80 (8) (Fig. 1c)
constructed via consecutive C6→ B4C3 isovalent substitu-
tions from D5h C50, D5h C70, D5d C80, D5d C80, D5h C90, D5d

C100, andD5hC110 follow the same IHPR rule, with 5, 5, 5, 10,
10, 10, and 10 isolated B4C3-HPs evenly distributed on the
waist around the C5 molecular axis, respectively (Fig. 1). In
these borafullerenes, C5 B20C45 (2), C5 B20C65 (4), C5 B40C60

(6), and C5 B40C80 (8) belong to typical axially chiral species.
To evaluate the thermodynamical stability of these

borafullerenes, we define the formation energy (Ef) of
(B4C3)nC60 − 6n series with respect to C60 + 4nB −
3nC= (B4C3)nC60− 6n as follows:

E f¼�� E B4C3ð ÞnC60−6n�� EC60þ4nEB−3nECð Þ��

where E(B4C3)nC60 − 6n, EC60, EB, and EC are the total en-
ergies of (B4C3)nC60-6n, C60, B, and C, respectively. As
shown in Fig. 2, the formation energies of the (B4C3)nC60

− 6n (n = 1–5) borafullerenes isovalent to C60 increase al-
most linearly with the number of isolated B4C3-HPs in the
system in an approximate linear relationship of Ef =
6.11279n-7.16745 kcal/mol, suggesting that the isolated

B4C3-HPs in these clusters can be approximately viewed
as independent structural units with weak correlations.
The calculated formation energies of 1–8 tabulated in
Table 1 show that these high-symmetry borafullerenes
are generally favored in thermodynamics with respect to
their fullerene parent precursors at room temperatures,
with certain fluctuations in Ef values depending on spe-
cific sizes and shapes of the clusters.

Extensive molecular dynamics (MD) simulations were per-
formed on 1–4 for 30 ps at 500 K, 800 K, and 1500 K to check
their dynamical stabilities. As shown in Fig. S4, all these
borafullerenes are dynamically stable at 1500 K, with the
small average root-mean-square-deviations of RMSD =
0.10Å, 0.09 Å, 0.09Å, and 0.09 Å andmaximum bond length
deviations ofMAXD= 0.35 Å, 0.33 Å, 0.31 Å, and 0.35 Å for
B20C35 (1), B20C45 (2), B20C55 (3), and B20C65 (4),
respectively.

Electronic structures and bonding pattern analyses

The high stabilities of these borafullerenes originate from their
unique electronic structures and bonding patterns. As shown in
Table 1, 1–8 possess considerably large calculated HOMO–
LUMO energy gaps, with ΔEGap = 2.86, 3.27, 3.28, 2.38,
3.08, 3.28, 3.28, and 2.43 eV at PBE0/6–31 +G* level, respec-
tively. Especially, the HOMO-LUMO gap of 3.26 eV obtained
for B20C45 (2) appears to be even larger than the corresponding
value of ΔEGap = 3.01 eV calculated for Ih C60 at the same
theoretical level, suggesting that these borafullerenes are
kinetically stable at room temperature and possible to be
synthesized in experiments. As clearly shown in Fig. S5,
B20C45 (2) possesses a similar molecular orbital energy
level diagram with C60, with the five degenerate
HOMOs (hu) and three degenerate LUMOs (t1u) orbitals
in Ih C60 broken into lower degenerate HOMO (e2) and
LUMO (e1) in C5 B20C45.

We further analyzed the bonding patterns of C3v B4C3H6,
C5 B20C45 (2), and C5hB20C55 (3) in details using the AdNDP
approach which recovers both the localized and delocalized
bonds of the concerned systems. As shown in Fig. 3a, the
quasi-planar C3v B4C3H6 possesses 6 delocalized 3c-2e σ
bonds on the B4C3 hexagonal framework and 3 totally
delocalized 7c-2e π bonds over the bowl-shaped molecular
plane, unveiling the aromatic nature ofC3v B4C3H6 analogous
to benzene (C6H6) [19]. Figure 3b indicates that B20C45 (2)
possesses 55 2c-2e C–C σ bonds on the top and at the bottom
with the occupation numbers of |ON| = 1.93–1.98 |e|, 5 2c-2e
C–B σ bonds around the waist between the five isolated B4C3-
HPs with |ON| = 1.93 |e|, and 30 3c-2e C–B–B σ bonds evenly
distributed on the five isolated B4C3-HPs with |ON| = 1.96–
1.97 |e|. The remaining 60 valence electrons form 30
delocalized π bonds over the σ skeleton, including 15 local-
ized 2c-2e π bonds on the top and bottom with ON = 1.61–

Table 1 Numbers of isolated B4C3 hexagonal pyramids (n), HOMO-
LUMO gaps (ΔEGap), NICS values (NICS), and the formation energy
(Ef) of the 1–8 borafullerenes at PBE0/6–31 +G(d) level

n ΔEGaps/
eV

NICS/
ppm

Ef/
kal mol−1

C5h B20C35 (1) 5 2.86 − 19 54.78
C5 B20C45 (2) 5 3.27 − 16 24.56
C5h B20C55 (3) 5 3.28 − 22 35.60
C5 B20C65 (4) 5 2.38 − 20 11.57
S10 B40C50 (5) 10 3.08 − 16 76.33
C5 B40C60 (6) 10 3.28 − 15 64.64
S10 B40C70 (7) 10 3.28 − 13 71.5
C5 B40C80 (8) 10 2.43 − 12 33.36
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1.71 |e| and 15 delocalized 7c-2e π bonds evenly distributed
over the five isolated B4C3-HPs with ON= 1.89–1.96 |e|, in an
overall symmetry of C5. Interestingly, there exist 3 7c-2e π
bonds forming a local π-aromatic system over each isolated
B4C3-HP. The five equivalent B4C3-HPs in B20C45 (2)
(Fig. 3b) have therefore well inherited π-bonding patterns of
the C3v B4C3H6 molecule in Fig. 3a, conferring local π-
aromaticity to the borafullerene. Such a bonding pattern

exhibits close similarity with that of Ih C60 [18]. As shown
in Fig. 3c, C5h B20C55 (3) possesses a similar bonding pattern
with B20C45 (2). It possesses 70 2c-2e C–C σ bonds, 5 2c-2e
C–B σ bonds, and 30 3c-2e C–B–B σ bonds in the σ skeleton,
over which there exist 20 2c-2e π bonds on the top and bottom
and 15 delocalized 7c-2e π bonds over five isolated B4C3-HPs
around the waist, again with 3 7c-2e π bonds forming an
aromatic system over each isolated B4C3-HP. Such a bonding

Fig. 4 Simulated a IR, b Raman,
and c UV-vis absorption spectra
of C5 B20C45 (2) at PBE0/6–31 +
G(d) level
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pattern shows close similarity with that of C5h C70 [18]. As
indicated in Fig. S6, similar AdNDP bonding patterns exist in
C5h B20C35 (1), C5 B20C65 (4), S10 B40C50 (5), C5 B40C60 (6),
S10 B40C70 (7), and C5 B40C80 (8). Such bonding patterns
render spherical aromaticity to 1–8 borafullerenes, as evi-
denced by their calculated negative nucleus-independent
chemical shifts (NICS) of NICS = − 19, − 16, − 22, − 20, −
16, − 15, − 13, and − 12 ppm at cage center.

Simulated IR, Raman, and UV-vis spectra

Joint infrared photodissociation (IR-PD) spectroscopy and
theoretical investigations have proven to be an effective ap-
proach in characterizing novel clusters in gas phases [41, 42].
The IR and Raman spectra of the prototypical C5 B20C45 (2)
are simulated in Fig. 4. It exhibits major IR active peaks at 557
(e1), 733 (a), 1161 (e1), 1269 (e1), 1315 (a), and 1487(e1) cm

−1

and Raman active peaks at 306 (e2), 847 (a), 1161 (e1), 1237
(a), and 1540 (e1) cm

-1, respectively. The Raman vibration at
369 cm−1 originates from typical radial breathing mode (a) of
the cage-like B20C45 (2) which may be used to characterize
boron-containing hollow nanostructures [43].

The simulated UV-vis spectrum of B20C45 (2) exhibits strong
absorption peaks at 256, 273, 292, 314, 322, and 363 nm, re-
spectively (Fig. 4). These strong UV absorptions mainly origi-
nate from electron transitions from the deep inner shells to the
highly unoccupied molecular orbitals of B20C45 (2), while the
weakUV-vis absorptions above 400 nm correspond to electronic
excitations from the occupied frontier orbitals (HOMO and
HOMO-1) to the unoccupied frontier orbitals of the system
(LUMO, LUMO+1, and LUMO+2) (Fig. 4).

Conclusions

In summary, based on extensive first-principles theory calcula-
tions, we have predicted in this work a series of spherically
aromatic borafullerenes B20C35 (1), B20C45 (2), B20C55 (3),
B20C65 (4), B40C50 (5), B40C60 (6), B40C70 (7), and B40C80 (8)
at DFT level which all follow the IHPR rule via isovalent sub-
stitutions from their fullerene analogues. The isovalent substitu-
tion strategy developed in [19] and this work and the structural
and bonding patterns demonstrated in boragraphenes and
borafullerenes may be applied to form other heterographenes
and heterofullerenes with promising properties to develop novel
nanodevices.
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