ORIGINAL PAPER

$(C_6H_6Cr)_n\&B_{40}$ (n = 1–6): Exohedral Borospherene Complexes with Cage-like B_{40} as an Effective Ligand with Multiple Coordination Sites

Ling Pei^{1,2} · Da-Zhi Li² · Hai-Ru Li¹ · Yue-Wen Mu¹ · Hai-Gang Lu¹ · Yan-Bo Wu¹ · Si-Dian Li¹

Received: 18 April 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

The newly discovered cage-like borospherene D_{2d} B₄₀ with two η^6 -B₆ hexagons and four η^7 -B₇ heptagons on the surface may serve as an effective multi-dentate ligand to coordinate transition metals. Based upon extensive density functional theory calculations, we present herein the possibility of the exohedral complex series (C₆H₆Cr)_n&B₄₀ (n = 1–6) with n Cr centres sandwiched between the central $\eta^{6/7}$ -B₄₀ unit and n planar η^6 -C₆H₆ ligands. C₆H₆Cr fragments in (C₆H₆Cr)_n&B₄₀ occupy the η^6 -B₆ hexagonal coordination site atop the B₄₀ cage first, the four neighboring η^7 -B₇ heptagons on the waist next, and finally the η^6 -B₆ hexagon at the bottom, forming a multinuclear complex series effectively stabilized by n C₆H₆Cr fragments. The two η^6 -B₆ hexagons and four η^7 -B₇ heptagons on the spherical surface of B₄₀ can be practically viewed as six independent coordination sites to coordinate Cr centers with almost the same coordination energies. Detailed bonding analyses indicate that the eclipsed $C_{2\nu}$ C₆H₆Cr&B₄₀ (**1**-**1**) possesses a coordination bonding pattern similar to that of dibenzenechromium, with the B₄₀ ligand inheriting the $\sigma + \pi$ double delocalization bonding pattern of the parent borospherene. The IR, Raman, and UV-vis absorption spectra of $C_{2\nu}$ C₆H₆Cr&B₄₀ (**1**-**1**) are theoretically simulated to facilitate its future experimental characterization.

Keywords First-principles theory \cdot Borospherene complexes \cdot Geometrical structures \cdot Bonding patterns \cdot Spectral simulations

Introduction

Since the discovery of C_{60} , fullerene complexes comprised of a cage-like C_{60} , a transition metal (TM) center, and an organic molecular ligand have formed an active area of research in both experiments and theory [1–10]. (C_6H_6)-TMC₆₀ and (C_5H_5)TMC₆₀ (TM = Sc–Co) are two types of typical complexes among them [7, 8]. C_{60} can act as an

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10876-019-01747-w) contains supplementary material, which is available to authorized users.

Si-Dian Li lisidian@sxu.edu.cn

¹ Institute of Molecular Science, Shanxi University, Taiyuan 030006, China

² Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, China effective ligand in $(C_6H_6)TMC_{60}$ (TM = Sc–Co) sandwich complexes in which the bonding type between TM and C_{60} in the ground state evolved from η^6 (TM = Sc–Cr) to η^5 (TM = Mn) and then to η^2 (TM = Fe and Co) with increasing number of d electrons in the TM center [7].

As the light neighbor of carbon, boron has a rich chemistry second only to carbon in the periodic table. The first cage-like all-boron fullerene D_{2d} B₄₀, dubbed borospherene, was discovered in gas phase in 2014 which features two equivalent η^6 -B₆ at the top and bottom and four equivalent η^7 -B₇ heptagons on the waist [11]. The discovery of D_{2d} B₄₀ paves the way for borospherene chemistry. It has been expanded to a borospherene family B^q_n (n = 36–42, q = n - 40) which are all composed of twelve interwoven boron double chains (BDCs) with the universal bonding pattern of $\sigma + \pi$ double delocalization [11–16]. Various endohedral and exohedral metalloborospherenes of alkali metals (Li, Na, K) [17–21], alkaline earth metals (Be, Mg, Ca, Sr, Ba) [20, 22, 23], and transition metals (Cu, Ag, Au, Sc, Y, La, U, Fe, Mn, Ni, Co)

[24–29] have been predicted in theory since 2014. More recently, our group presented the possibility of 3D aromatic heteroborospherenes Ni_n \in B₄₀ (n = 1–4) [30] which contains 1–4 planar or quasi-planar heptacoordinate Ni centers in η^7 -B₇ heptagons on the cage surface with the universal bonding pattern of $\sigma + \pi$ double delocalization on the B₄₀ ligand. In comparison, the hexacoordinate Ni centers in Ni₅ \in B₄₀ and Ni₆ \in B₄₀ at the top and bottom of the B₄₀ cage possess obviously lower coordination energies [30].

Exohedral complexation of B₄₀ was recently predicted by Jemmis et al. [31]. Both the η^6 -B₆ hexagonal and η^7 -B₇ heptagonal faces of B₄₀ can be used as ligands to sandwich Cr, with C_6H_6Cr fragment preferring η^6 -coordination. As an extension along this line, we present herein the possibility of the exohedral complex series (C₆H₆Cr)_n&B₄₀ (n = 1-6) with n Cr centers sandwiched between the central $\eta^{6/7}$ -B₄₀ cage-like unit and n planar η^6 -C₆H₆ ligands. Cr centers in $(C_6H_6Cr)_n\&B_{40}$ (n = 1-6) are coordinated to the η^{6} -B₆ hexagonal coordination site atop the B₄₀ cage first, the four neighboring η^7 -B₇ heptagonal sites on the waist next, and finally the η^6 -B₆ hexagonal site at the bottom, in the highest possible geometrical symmetries of the systems. Detailed bonding analyses indicate that the $(C_6H_6Cr)_n\&B_{40}$ complexes possess a spd- π coordination bonding pattern similar to that of dibenzenechromium D_{6h} (C₆H₆)₂Cr, with cage-like B₄₀ as a multi-dentate ligand inheriting the $\sigma + \pi$ double delocalization bonding pattern of the parent borospherene.

Computational Details

Various manually constructed eclipsed and staggered (C₆₋ $H_6Cr_{n}\&B_{40}$ (n = 1-6) complexes with Cr centers at different η^6 - and η^7 -coordination sites were optimized at the PBE0/6-31G(d) level, with their vibrational frequencies checked to make sure the optimized structures were true minima of the systems. The initially optimized structures were then fully re-optimized at PBE0 level with the basis set of 6-311 + G(d) [32]. Nucleus Independent Chemical Shifts (NICS) [33, 34] were calculated at the cage center of B_{40} at the PBE0/6-311 + G(d). Natural bonding orbital (NBO) analyses were performed using the NBO 6.0 program [35]. Detailed bonding analyses on $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1) were performed using the Adaptive Natural Density Partitioning (AdNDP) method [36, 37] which has been successfully applied to various molecules and clusters [11–16]. UV–vis absorption spectrum was calculated using time-dependent DFT approach (TD-DFT) [38, 39]. All calculations were performed using the Gausssian16 program [40].

Results and Discussion

Structures and Stabilities

Structures and Relative Stabilities

Structures of the lowest-lying isomers obtained for $(C_6 H_6Cr)_n \& B_{40}$ (n = 1–6) are depicted in Fig. 1. Alternative isomers of $(C_6H_6Cr)_n \& B_{40}$ along with their relative energies at the PBE0/6-311 + G(d) are presented in Fig. S1. A sketch comparison of the eclipsed and staggered conformations between C_6 six-membered ring in C_6H_6 and B_6 hexagon and B_7 heptagon on the surface of B_{40} is shown in Fig. S2.

The lowest-lying isomer $C_{2\nu}$ C₆H₆Cr&[η^{6} -B₄₀] (1-1) obtained in this work agrees well with that previously predicted in Ref.31 in which the C₆H₆Cr fragment is coordinated to the η^{6} -B₆ hexagonal coordination site atop the B₄₀ cage in an eclipsed motif. The corresponding staggered conformation $C_{2\nu}$ C₆H₆Cr&[η^{6} -B₄₀] turned out to be a transition state with an imaginary frequency at 56i cm⁻¹ at PBE0/6-31G(d). $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1) lies 0.05 and 0.06 eV lower than the staggered C_s C₆H₆Cr&[η^{7} -B₄₀] (1-2) and eclipsed C_s C₆H₆Cr&[η^{7} -B₄₀] (1-3), respectively (Fig. S1), in which Cr atom occupies the η^{7} -B₇ heptagonal coordination sites of the B₄₀ cage on the waist. It can be concluded that a C₆H₆Cr fragment slightly favors η^{6} -coordination over η^{7} -coordination in C₆H₆Cr&B₄₀ though the energy difference is small.

With the second C_6H_6Cr fragment added in, the situation becomes complicated in $(C_6H_6Cr)_2\&B_{40}$. The two C_6H_6Cr fragments may be coordinated to two η^6 -B₆ hexagonal coordination sites on the top and bottom, two η^7 -B₇ heptagonal sites on the waist, or one η^6 -B₆ hexagon on the top and one η^7 -B₇ heptagon on the waist, in either staggered or eclipsed motifs. The four lowest-lying isomers thus obtained for $(C_6H_6Cr)_2\&B_{40}$ are depicted in Fig. S1. The lowest-lying isomer C_1 $(C_6H_6Cr)_2\&B_{40}$ (**2-1**) can be obtained by coordinating the second C_6H_6Cr fragment in a η^7 -B₇ heptagon in $C_{2\nu}$ $C_6H_6Cr\&B_{40}$ (**1-1**). It lies 0.02 eV

Fig. 1 Lowest-lying isomers of $(C_6H_6Cr)_n\&B_{40}$ (n = 1–6) at PBE0/6-311 + G(d) level

lower in energy than C_2 (C₆H₆Cr)₂&B₄₀ (**2-2**) which contains two Cr atoms occupying two adjacent η^7 -B₇ heptagonal coordination sites. Isomers D_{2d} (C₆H₆Cr)₂&B₄₀ (**2-3**) and $C_{2\nu}$ (C₆H₆Cr)₂&B₄₀ (**2-4**) with two Cr atoms occupying the two η^6 -B₆ hexagons or two η^7 -B₇ heptagons on the opposite sides lie + 0.21 eV and + 0.28 eV higher than (C₆H₆Cr)₂&B₄₀ (**2-1**), respectively.

The situation becomes more complicated in $(C_6H_6Cr)_3\&B_{40}$ which contains three C_6H_6Cr fragments coordinately bonded to the B_{40} cage. Various possible structures are considered to compare their relative stabilities. The lowest-lying isomer C_1 ($C_6H_6Cr)_3\&B_{40}$ (3-1) constructed by adding one C_6H_6Cr unit at the adjacent η^7 -B₇ heptagon of C_1 ($C_6H_6Cr)_2\&B_{40}$ (2-1) turns out to be at least 0.20 eV lower in energy than the other six isomers considered.

The axially chiral C_2 (C₆H₆Cr)₄&B₄₀ (**4-1**) turns out to be the lowest-lying isomer of (C₆H₆Cr)₄&B₄₀ which can be constructed by adding one C₆H₆Cr fragment at the η^6 -B₆ coordination site at the bottom of C_1 (C₆H₆Cr)₃&B₄₀ (**3-1**). It lies only 0.01 eV lower in energy than the second lowestlying isomer C_s (C₆H₆Cr)₄&B₄₀ (**4-2**) which can be obtained by coordinating one C₆H₆Cr unit to a η^7 -B₇ heptagon in C_1 (C₆H₆Cr)₃&B₄₀ (**3-1**). The two isomers are practically degenerate in thermodynamics. The optimized (C₆H₆Cr)₄&B₄₀ (**4-3**), (**4-4**), (**4-5**) and (**4-6**) lie 0.25, 0.33, 0.33 and 0.34 eV above (C₆H₆Cr)₄&B₄₀ (**4-1**).

With five C_6H_6Cr fragments over six possible coordination sites on B_{40} surface, the situation in $(C_6H_6Cr)_5\&B_{40}$ becomes simpler. Two almost degenerate low-lying isomers with the energy difference of only 0.01 eV are obtained, with $C_{2\nu}$ ($C_6H_6Cr)_5\&B_{40}$ (5-1) and C_s (C_6H_6 Cr)₅&B₄₀ (5-2) constructed by adding one C_6H_6Cr unit at a η^7 - B_7 heptagonal coordination site in C_s ($C_6H_6Cr)_4\&B_{40}$ (4-2) and C_2 ($C_6H_6Cr)_4\&B_{40}$ (4-1), respectively.

Adding one more C_6H_6Cr fragment to $C_{2\nu}$ (C_6H_6 Cr)₅&B₄₀ (5-1) at the final η^6 -B₆ hexagonal coordination site at the bottom produces the perfect cage-like D_{2d} (C_6 H_6Cr)_n&B₄₀ (6-1) as the lowest-lying isomer of the system. It possesses the highest symmetry in the complex series, with the η^6 -B₆ and η^7 -B₇ coordination sites on the opposite sides of B₄₀ cage in staggered and eclipsed motifs, respectively. It can be concluded that the n C_6H_6Cr fragments in (C_6H_6Cr)_n&B₄₀ (n = 1–6) are coordinated to the η^6 -B₆ hexagonal coordination site atop the B₄₀ cage first, the four neighboring η^7 -B₇ heptagonal sites on the waist next, and finally the η^6 -B₆ hexagonal site at the bottom, forming a multinuclear complex series with n Cr centres sandwiched between the central $\eta^{6/7}$ -B₄₀ unit and n planar η^6 -C₆H₆ ligands.

Coordination Energies

To better interpret the complexation process of B_{40} , we define the coordination energies (E_c) of the $(C_6H_6Cr)_n\&B_{40}$ (n = 1–6) complexes as following:

$$E_c \ = \ - \big\{ E\big[(C_6 H_6 Cr)_n \& B_{40} \big] - E[B_{40}] - n E[Cr] - n E[C_6 H_6] \big\}$$

where $E[(C_6H_6Cr)_n\&B_{40}]$, $E[B_{40}]$, E[Cr], and $E[C_6H_6]$ are the total energies of the $(C_6H_6Cr)_n\&B_{40}$ complex, isolated $B_{40} (D_{2d}, {}^{1}A_{1}), Cr (O_{H}, {}^{7}A_{1g}), and C_{6}H_{6} (D_{6h}, {}^{1}A_{1g}) at the$ PBE0/6-311 + G(d) level, respectively. Intriguingly, the E_c values of the $(C_6H_6Cr)_n\&B_{40}$ (n = 1-6) series increase almost perfectly linearly with the number of C6H6Cr fragments, with the average coordination energy per ligand of $E_c = 70.89$ kcal/mol (3.07 eV/C₆H₆Cr) at PBE0 (Fig. 2). The $E_c \sim n$ linear relationship clearly indicates that the two η^6 -B₆ hexagons and four η^7 -B₇ heptagons on the cage surface of D_{2d} B₄₀ can be practically viewed as six independent and almost equivalent coordination sites to transition metal centers. The small energy differences between different isomers of the same complexes discussed above well support the conclusion. Multiple isomers may therefore co-exist in experiments for $(C_6H_6Cr)_n\&B_{40}$ complexes.

We calculated the energy changes (ΔE) from D_{6h} (C_6H_6)₂Cr to $C_{3\nu}$ $C_6H_6Cr(\eta^6-C_{60})$ in reaction (1), from D_{6h} (C_6H_6)₂Cr to $C_{2\nu}$ $C_6H_6Cr\&B_{40}$ (1-1) in reaction (2), and from $C_{3\nu}$ $C_6H_6Cr(\eta^6-C_{60})$ to $C_{2\nu}$ $C_6H_6Cr\&B_{40}$ (1-1) in reaction (3) in the following processes

$$(C_6H_6)_2Cr + C_{60} = C_6H_6Cr(\eta^6 - C_{60}) + C_6H_6 \qquad (1)$$

$$(C_6H_6)_2Cr + B_{40} = C_6H_6Cr\&B_{40} + C_6H_6$$
(2)

$$C_{6}H_{6}Cr(\eta^{6} - C_{60}) + B_{40} = C_{6}H_{6}Cr\&(\eta^{6} - B_{40}) + C_{60}$$
(3)

Fig. 2 Coordination energies (kcal/mol) of the $(C_6H_6Cr)_n\&B_{40}$ (n = 1–6) complexes at the PBE0/6-311 + G(d) level

which turn out to have the calculated energy changes of $\Delta E =+ 19.95$, - 28.28, and - 48.23 kcal/mol at PBE0/6-311 + G(d) level, respectively. These values clearly indicate that the formation of $C_{3\nu}$ C₆H₆Cr(η^{6} -C₆₀) is endothermic from D_{6h} (C₆H₆)₂Cr, while the formations of $C_{2\nu}$ C₆H₆Cr(\Re^{6} -C₆₀). B₄₀ is therefore an effective ligand to replace C₆H₆ in (C₆H₆)₂Cr and to replace C₆₀ in C₆H₆Cr(η^{6} -C₆₀). Complexation of B₄₀ with C₆H₆Cr fragments effectively helps to stabilize B₄₀ in its complexes.

Aromaticity and HOMO-LOMO Gaps

NICS values at cage centers have been widely used as an index for 3D-aromaticity, while HOMO–LUMO gaps reflect the kinetic stability of the concerned systems [41]. We calculated the NICS values at the centroid of the B_{40} cage in $(C_6H_6Cr)_n\&B_{40}$ (n = 1–6) complexes which all turn out to possess negative NICS values ranging from – 49.29 to – 56.28 ppm at PBE0/6-311 + G(d) (Table 1). These values are even more negative than the corresponding value of – 41.59 ppm at the center of a bare B_{40} . They are therefore all 3D-aromatic in nature, similar to bare B_{40} [11].

 $(C_6H_6Cr)_n\&B_{40}$ (n = 1–6) complexes possess the sizable HOMO–LUMO gaps of 2.63, 2.50, 2.52, 2.41, 2.41, and 2.29 eV for n = 1, 2, 3, 4, 5, and 6 at PBE0, respectively. Although these values decrease gradually with increasing n, they all have wider HOMO–LUMO gaps than that (2.26 eV) of $C_{3\nu} C_6H_6Cr(\eta^6-C_{60})$ at the same theoretic level. However, both borospherene and fullerene complexes possess obviously smaller HOMO–LUMO gaps than $D_{6h} (C_6H_6)_2Cr$ (4.46 eV) (Table 1).

Bonding Analyses

NBO Analyses

Detailed NBO analyses show that the total Wiberg bond orders of the Cr centers in $(C_6H_6Cr)_n\&B_{40}$ (n = 1–6) fall in

a narrow range between 4.34 and 4.49 (Table 1). These values are systematically higher than the corresponding values of 4.12 in $C_{3\nu}$ C₆H₆Cr(η^6 -C₆₀) and 4.22 in D_{6h} (C₆H₆)₂Cr at PBE0/6-311 + G(d) level, suggesting that effective coordination interactions are formed in (C₆H₆ Cr)_n&B₄₀ complexes at both η^6 -B₆ and η^7 -B₇ coordination sites. As a specific example, Cr centers in (C₆H₆Cr)₂&B₄₀ (**2-1**) have the overall Cr–B coordination bond orders of WBI_{Cr} = 4.45 at η^6 -B₆ and WBI_{Cr} = 4.34 at η^7 -B₇, with both of them being slightly higher than the corresponding overall Cr–C coordination bond order of WBI_{Cr} = 4.12 in D_{6h} (C₆H₆)₂Cr.

It is also interesting to notice that the Cr centers in $(C_6H_6Cr)_n\&B_{40}$ (n = 1-6) have higher valence electron numbers than that in D_{6h} (C₆H₆)₂Cr. For example, Cr in $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1) has the electron configuration of Cr $[Ar]4s^{0.19}3d^{6.39}$ and the natural atomic charge of $q_{Cr} =$ - 0.67 lel, while the Cr center in D_{6h} (C₆H₆)₂Cr possesses the electron configuration of Cr[Ar]4s^{0.18}3d^{5.77} and natural atomic charge of $q_{Cr} = -0.02$ lel. Similar results exist in other borospherene complexes (Table 1). These results have their origin from the fact that boron possesses a lower electronegativity (2.04) than carbon (2.55). B₄₀ is therefore a better electron donor than both C_{60} and C_6H_6 . It is true that the Cr centers in $(C_6H_6Cr)_n\&B_{40}$ (n = 1-6) possess the sizable negative atomic charges of $q_{Cr} = -0.45$ to -0.69lel, while Cr centers in both $(C_6H_6)_2$ Cr and C_6H_6 Cr (η^6-C_{60}) remain practically neutral with $q_{Cr}\,\approx\,+\,0.01\,$ to $\,-\,0.02$ lel.

AdNDP Analyses on $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1)

The high stabilities of $(C_6H_6Cr)_n\&B_{40}$ (n = 1–6) originate from their unique electronic structures and bonding patterns. Detailed AdNDP analyses are performed on $C_{2\nu}$ $C_6H_6Cr\&B_{40}$ (1-1) to compare with that of the prototypic sandwich complex dibenzenechromium D_{6h} (C_6H_6)₂Cr. As shown in Fig. 3, D_{6h} (C_6H_6)₂Cr possesses 12 2c–2e C–H σ bonds and 12 2c–2e C–C σ bonds on both the C₆H₆ ligands with the occupation numbers of ON = 1.98 lel and 1.97 lel, respectively. The central Cr atom mainly participates in 9

	NICS	∆Gap	WBI _{Cr}	q_{Cr}
$C_{2\nu}$ C ₆ H ₆ Cr&B ₄₀	- 49.29	2.63	4.46	- 0.67
$C_1 (C_6H_6Cr)_2\&B_{40}$	- 53.01	2.50	4.34 ~ 4.45	- 0.53 to - 0.67
$C_2 (C_6 H_6 Cr)_3 \& B_{40}$	- 54.10	2.52	4.34 ~ 4.45	- 0.53 to - 0.69
$C_2 (C_6 H_6 Cr)_4 \& B_{40}$	- 52.72	2.41	4.37 ~ 4.45	- 0.53 to - 0.66
$C_{2\nu}$ (C ₆ H ₆ Cr) ₅ &B ₄₀	- 55.86	2.41	4.35 ~ 4.49	-0.49 to -0.67
D _{2d} (C ₆ H ₆ Cr) ₆ &B ₄₀	- 56.28	2.29	4.38 ~ 4.47	-0.45 to -0.65
$C_{3\nu} C_6 H_6 Cr(\eta^6 - C_{60})$	- 8.47	2.26	4.12	+ 0.01
D_{6h} (C ₆ H ₆) ₂ Cr	_	4.46	4.22	- 0.02

values (NICS/ppm), HOMO– LUMO gaps (Δ Gap/eV), overall Wiberg bond orders of the Cr centers (WBI_{Cr}), and atomic charge (q_{cr}/lel) of the Cr centers of (C₆H₆Cr)_n&B₄₀ (n = 1–6) complexes compared with that of C₃, C₆H₆Cr(η^{6} -C₆₀) and D_{6h} (C₆H₆)₂Cr at PBE0/6-311 + G(d) level

Table 1 Calculated NICS

Fig. 3 Comparison of the AdNDP bonding patterns of C_{2v} C₆H₆Cr&B₄₀ (1-1) and D_{6h} (C₆H₆)₂Cr, with the occupation numbers (ONs) indicated

multicenter spd- π coordination bonds, including 3 7c–2e coordination π bonds with ON = 2.0 lel between Cr center and the C₆H₆ ligand on the top, 3 7c–2e coordination π bonds with ON = 2.0 lel between Cr center and the C₆H₆ ligand at the bottom, and 3 13c–2e π bonds involving both the C₆H₆ ligands and Cr center with ON = 1.96–2.00 lel which are totally delocalized. Our AdNDP bonding pattern is different from that previously reported in [42, 43] which contains 9 totally delocalized spd- π coordination bonds (9 13c–2e bonds) [42, 43]. We believe both patterns are reasonable based on the fact that both of them have the right bonding symmetries (*D*_{6h}) and possess high ON values. In comparison, as shown in Fig. 3, $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1) exhibits a clearly similar coordination bonding pattern with D_{6h} (C₆H₆)₂Cr around the η^6 -B₆ coordination site. The localized σ bonds on the two ligands include 6 C–H 2c–2e bonds with ON = 1.98 lel and 6 C–C 2c–2e bonds with ON = 1.97 lel on C₆H₆ and 48 3c–2e bonds with ON = 1.74–1.96 lel on the B₄₀ cage. The B₄₀-only π -bonds include 2 5c–2e π bonds with ON = 1.93 lel and 2 7c–2e π bonds with ON = 1.77 lel at the bottom of the B₄₀ cage and 4 6c–2e π bonds on the waist with ON = 1.93 lel. They originate from the 8 π bonds at the same locations in isolated D_{2d} B₄₀ [11]. The remaining 10 bonds form the π framework involving both the ligands and Cr center which are readily categorized into three groups. The first group includes 3 7c–2e π bonds with ON = 1.96 lel involving the Cr center and the C_6H_6 ligand at the top. They are similar to the 3 7c-2e π bonds between Cr and the C₆H₆ ligand in D_{6h} (C₆H₆)₂Cr on the top. The second group contains 4 $17c-2e \pi$ bonds with ON = 1.84–1.96 lel involving the Cr atom and the 16 boron atoms in the boron double chain around the η^6 -B₆ coordination site. They are formed between Cr spd-hybridized atomic orbitals and the 4 π bonds (2 5c-2e π and 2 7c-2e π) over the boron double chain around the η^6 -B₆ hexagon atop the B₄₀ cage [11]. These 4 17c–2e π coordination interactions are similar to the 3 7c–2e π bonds between Cr and the C₆H₆ ligand in the D_{6h} (C₆H₆)₂Cr at the bottom (though the former has one more π coordination bond than the latter as explained above). The third group includes 3 23c–2e delocalized π bonds with ON = 1.77 - 1.99 lel involving the Cr center, C_6H_6 ligand, and the 16 boron atoms in the boron double chain around the η^6 -B₆ coordination site. They exhibit a one-to-one correspondence relationship with the 3 13–2e π bonds in D_{6h} (C₆H₆)₂Cr. Overall, the coordination bonding pattern of $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1) is similar to that of D_{6h} (C₆H₆)₂Cr though the former possesses 10-coordination bonds between the Cr center and B₄₀ ligand due to the existence of four delocalized π bonds around the η^6 -B₆ hexagon atop the B_{40} cage [11]. Other $(C_6H_6Cr)_n\&B_{40}$ complexes follow similar coordination patterns with $C_{2\nu}$ $C_6H_6Cr\&B_{40}$ (1-1), with the highest-symmetry D_{2d} (C_6 H₆Cr)₆&B₄₀ possessing a coordination bonding pattern in which each of the 12 delocalized π molecular orbitals over the B₄₀ cage is shared by two neighbouring coordination cites.

Spectral Simulations for $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1)

The IR, Raman, and UV–vis absorption spectra of $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1) are computationally simulated in Fig. 4 to facilitate its future spectral characterizations. The simulated IR and Raman spectra display numerous active absorption peaks which encompass 50 IR (17a₁ + 18b₁ + 15b₂) and 103 Raman (25a₁ + 35a₂ + 19b₁ + 24b₂) active modes. The major IR bands lie between 400–1400 cm⁻¹, with four strong peaks at 417 (a₁), 523 (a₁), 1237 (b₂), and 1319 (a₁) cm⁻¹ which may serve as fingerprints to characterize the complex. The major Raman active peaks occur at 428 (a₁), 645 (a₁), 1008 (a₁), and 1319 (a₁) cm⁻¹, respectively. The four peaks at 142 (a₁), 188 (a₁), 230 (a₁), and 428 (a₁) cm⁻¹ belong to typical radial breathing modes (RBMs) of the B₄₀ unit which can be used to characterize cage-like structures.

The simulated UV-vis spectrum exhibits three major peaks at 336, 395, and 501 nm and two weak bands at 631,

Fig. 4 Simulated **a** IR, **b** Raman and **c** UV–vis absorption spectra of $C_{2\nu}$ C₆H₆Cr&B₄₀ (1-1) at PBE0/6-311 + G(d) level

and 732 nm, respectively. Detailed analyses indicate that the two weak bands in visible-light range at 631 and 732 nm correspond mainly to HOMO \rightarrow LUMO + 1 and HOMO \rightarrow LUMO electronic transitions, respectively, while the three strong UV absorption peaks at 336, 395, and 501 nm involve electronic transitions from the inner shells (Table S1).

Summary

Based upon extensive DFT calculations, we present in this work the viable possibility of exohedral complexes (C_6 $H_6Cr_{n}\&B_{40}$ (n = 1-6) which contain n Cr centres sandwiched between the central $\eta^{6/7}$ -B₄₀ unit and n planar η^6 -C₆H₆ ligands. These borospherene complexes are effectively stabilized by n C₆H₆Cr fragments at n $\eta^{6/7}$ -coordination sites which can be practically viewed as n independent coordination sites with almost the same coordination energies. $(C_6H_6Cr)_n\&B_{40}$ complexes possess coordination bonding patterns similar to that of dibenzenechromium (D_{6h} (C_6H_6)₂Cr). Investigations to sandwich transition metals in 1D TM&B₄₀, 2D TM₂&B₄₀, and 3D TM₃&B₄₀ crystals with unique magnetic properties are currently in progress. The structural and bonding patterns developed in this work can be utilized to design novel complexes of the borospherene family.

Acknowledgements The work was supported by the National Natural Science Foundation of China (21720102006 to S.-D. Li).

Compliance with Ethical Standards

Conflict of interest All the authors of this paper have no conflict of interest.

References

- 1. J. W. Buchanan, G. A. Grieves, J. E. Reddic, and M. A. Duncan (1999). Int. J. Mass. Spectrom. 182, 323.
- E. D. Jemmis, M. Manoharan, and P. K. Sharma (2000). Organometallics. 19, 1879.
- E. D. Jemmis and P. K. Sharma (2001). J. Mol. Graph. Moedl. 19, 256.
- E. G. Galpern, A. R. Sabirov, and I. V. Stankevich (2007). *Phys. Solid. State.* 49, 2330.
- 5. R. Salcedo (2009). Polyhedron. 28, 431.
- J. I. Martínez, J. M. García-Lastra, M. J. López, and J. A. Alonso (2010). J. Chem. Phys. 132, 044314.
- L. Y. Zhu, T. T. Zhang, M. X. Yi, and J. L. Wang (2010). J. Phys. Chem. A. 114, 9398.
- Z. Yang, B. Zhang, X. Liu, Y. Yang, X. Li, S. Xiong, and B. Xu (2013). J. Phys. B: At. Mol. Opt. Phys. 46, 035101.
- M. Sawamura, Y. Kuninobu, M. Toganoh, Y. Matsuo, M. Yamanaka, and E. Nakamura (2002). J. Am. Chem. Soc. 124, 9354.
- Y. Matsuo, K. Tahara, and E. Nakamura (2006). J. Am. Chem. Soc. 128, 7154.
- H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). *Nat. Chem.* 6, 727.
- Q. Chen, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, and S. D. Li (2016). *Phys. Chem. Chem. Phys.* 18, 14186.
- W. J. Tian, Q. Chen, H. R. Li, M. Yan, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2016). *Phys. Chem. Chem. Phys.* 18, 9922.

- Q. Chen, H. R. Li, C. Q. Miao, Y. J. Wang, H. G. Lu, Y. W. Mu,
 G. M. Ren, H. J. Zhai, and S. D. Li (2016). *Phys. Chem. Chem. Phys.* 18, 11610.
- Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2015). *Angew. Chem. Int. Edit.* 54, 8160.
- Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2015). Acs Nano. 9, 754.
- 17. Z. Rostami and F. Firoznasab (2018). J. Mol. Model. 24, 194.
- M. Moradi, Z. Bagheri, and A. Bodaghi (2017). *Physica. E.* 89, 148.
- 19. E. Shakerzadeh, Z. Biglari, and E. Tahmasebi (2016). Chem. Phys. Lett. 654, 76.
- W. Fa, S. Chen, S. Pande, and X. C. Zeng (2015). J. Phys. Chem. A. 119, 11208.
- H. Bai, B. Bai, L. Zhang, W. Huang, Y. W. Mu, H. J. Zhai, and S. D. Li (2016). *Sci. Rep.* 18, (6), 35518.
- Y. An, M. Zhang, D. Wu, Z. Fu, T. Wang, and C. Xia (2016). Phys. Chem. Chem. Phys. 18, 12024.
- 23. H. Bai, Q. Chen, H. J. Zhai, and S. D. Li (2015). Angew. Chem. Int. Edit. 54, 941.
- 24. C. Z. Wang, T. Bo, J. H. Lan, Q. Y. Wu, Z. F. Chai, J. K. Gibson, and W. Q. Shi (2018). *Chem. Commun.* 54, 2248.
- T. R. Yu, Y. Gao, D. Xu, and Z. Wang (2017). Nano. Res. 11, 354.
- 26. S. X. Li, Z. P. Zhang, Z. W. Long, and S. J. Qin (2017). RSC. Adv. 7, 38526.
- 27. W. Wang, Y. D. Guo, and X. H. Yan (2016). RSC Adv. 6, 40155.
- P. Jin, Q. Hou, C. Tang, and Z. Chen (2015). *Theor. Chem. Acc.* 134, 13.
- 29. C. M. Tang and X. Zhang (2016). Int. J. Hydrogen Energ. 41, 16992.
- 30. H. R. Li, X. X. Tian, X. M. Luo, M. Yan, Y. W. Mu, H. G. Lu, and S. D. Li (2017). Sci. Rep. 7, 5701.
- 31. N. Karmodak and E. D. Jemmis (2016). Chem. Asian J. 11, 3350.
- 32. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chern. Phys. 72, 650.
- 33. P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. van Hommes (1996). J. Am. Chem. Soc. 118, 6317.
- 34. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. V. Schleyer (2005). *Chem. Rev.* 105, (10), 3842.
- E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold (2013). NBO 6.0. (http://nbo6.chem.wisc.edu).
- D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.
- 37. D. Y. Zubarev and A. I. Boldyrev (2008). J. Org. Chem. 73, 9251.
- Riidiger Bauernschmitt and R. Ahlrichs (1996). Chem. Phys. Lett. 256, 454.
- M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub (1998). J. Chem. Phys. 108, 4439.
- M. J. Frisch, et al. (2016) Gaussian 16, Revision B.01, Gaussian Inc., Wallingford, CT.
- 41. B. Jiang, M. H. Tang, J. C. Li, Y. G. Xiao, Z. H. Tang, H. Q. Cai, X. S. Lv, and Y. C. Zhou (2012). J. Phys. D: Appl. Phys. 45, 025102.
- 42. Y. Yuan and L. J. Cheng (2013). J. Chem. Phys. 138, 024301.
- 43. C. Xu, L. J. Cheng, and J. L. Yang (2015). Int. J. Quant. Chem. 115, 1621.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.