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Abstract: A many-body putential energy function has been employed 1o investigate the dynamical properties, surface energies and reconstrue-
tions, and mclting behavior of face-centered cubic (FCC) lead. Experimental phonon dispersion curves wlong {00}, (qq0) and (qqy) high
symmelry directions are well reproduced. Surface energy calculations indicute that Pb{110) undergoes a severe surface relaxation. A large in-
ward rclaxation up to - 18% relative to FCC lattice is predicted for the top-most layer of Ph{110} surfuce and un expansion-contraction ahter-
nation fur the top 7 interluyer spaces is observed. Monte Carlo simulation indicates that FCC lead melt above 425K with this potential, an esti-
mation about 25K lower then the observed welting point of Pb nuno-particles.
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1 Introductien fit by Cowleym reproduced the general shape of the oh-
served phonon dispersion curves along high symmetry di-
As a heavy metal, the dynamic properties of lead are fea- P . P & En =Y Y
. ) L . rections, but failed to reproduce the Kohn anomalies and
ured in two aspects. Firstly, it is the first material for be l ) N N \
X L. the long range electron-phonon interaction. An energy de-
which the profound Kohn anomalies in the (gqq)L branch i 8 Oj | d P 0 oved rﬁ N
endent model pseudo-potential was employed to fit the
near the point of (0.5,0.5,0.5) were observed, and P . P oo ployed 1o
. phonon dispersion curves of lead later by So and co-woek-
secondly, the strong long range phonon-eleciron interac- 131
. o ers -, bul their fitling was obviously worse than Cowley's
tion causes strong curvature near the Brillouin zone

ized BVK model,
boundarics along both (q00) and {qq0) directions' "% . pammeterizo mode

Fitting the phonon dispersion curves of the face - centered
eubie (FCC) lead has remained as a big challenge to var-
ious kinds of theories so far. The 26 Born-Von Karman

(BVK) force constants obtained with a phenomenological

R EDR (1950—), B, BB LRSS R,

FCC lead undergoes pressure-induced phase transitions
(FCC - > HCP - > BCC) and the three kinds of solids
lie very close in cohesive energies ( within 0.026 eV per

atom )}, while the diamond struclure, which is the most
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stable form for ather group IV elenents, is much less sia-
ble for Ph due 1o the strong relativistic effect*->: . Surface
energies of Ph (110) and (111) were predicted to be al-
most the same and a very large inward relaxation for the
top layer in (110) dircetion were also confirmed by both
experiment and theory!®! . An very recent in situ high-res-
olution electron microscopy observation by Mitome!”! has
shown that nano-weter lead particles with diameters of 6
nm melt into liquid in the core region at just above 443K
(170°C), well below the melting point of the bulk
(600.7K}. Surface-initiated pre-melting at 450K was al-
so observed on Ph{110) by Frenken's group!®!.

In this work, we utilize the 2 + 3 body effective potential
energy function proposed by Murrell and CO - work-
ers'® """ 1o siudy the dynamic properties of FCC lead, 1o
calculate the surface energies and surface relaxations, and
to simulate the surfuce melling process. We aim to pro-
vide a simple analytical function that can be used to pre-

dict various kinds of properties of solid lead.

2 Optimization of the Potential

The 2 + 3 body effective potential energy function has
heen documented in a large number of publications® % .
Various applications of the potential can be found in a re-

[11]

cent comprehensive review' ' and the references ciled

therein .

The full potential of the latiice is written as the sum of the
2-body ng(ZJ and 3-body V,j,,m terms

V=XV 22000 ()
Where
VP = - DAL+ agppdexp(- ayp,)  (2)

py = (ry =~ r)/r, (3
and
Vﬁ): D, Co+ € g
+ T+ 603+ 0D + Cugf
+ G500+ D) + C(03-30,0D)
+ €01+ CQi(Q3+ 03 + Gl Q3 + 030
+ CoQ(¢3-305 01
Damp( as, Q) (4)

7, and D, are distance and energy scaling faclors respec-

tively which ensure that the lattice constants and cohesive
energies of the bulk are reproduced exactly, a; and a3
are adjustable exponents for two and three body terms re-
spectively, while ( (), (3, (1) are the so-called symme-
try coordinates. The damping function Damp chosen flor

lead in this work is a Gauss-type function| "] .

Table 1 The optimized parameters of
the quartic 2 + 3 body potential used in this work

a, 7.6 G, - 4.833387
ay 4.2 [ - 7.298921
D./eV 0.58795 Cs 10550173
R/A 3.30719 Ce 0.608533
[ 6.687216

Ca 0.546760 Cy - 11.653804
C - 1.214105 o 3. 106570
% 3.598935 Cp - 1.866951

The above process has been programmed and detailed de-
seription of the parameter optimization procedure can be
found in Ref [11]. The optimized parameters of the quar-
tic potential used in this work are listed in Table 1,

3 Results and discussion

This potential reproduces the phonon dispersion curves of
FCC Pb {q00), (qq0) and (qqq) quite well (see
Fig.1). As can be seen from the figure, the Kohn
anomalies at the top-most branch near point £ (0.3,
0.5, 0.5) and the long range electron-phonon interaction
at the zone boundary (1, 0, 0) have also been fairly
well represented. The calculated curves approach the
shadow minima at (1, 0, 0) for both the L and T,
branches al the same time although the fit is not perfect .
Our potential hes much fewer adjustable parameters com-
pared to the BCM model’2! which simply treated all the 26
force constants as adjustable parameters in a phenomeno-
logical fit. Instead, we calculated force constants with the

parameterized mode! potential .

This potential produces almost the same cohesive energies
for FCC (2.0300 eV}, HCP (2.0203 eV} and BCC
{2.0300 V) lead, in agrsement with previous results ob-
tained in references mentioned above. While diamond
structure, the most stable form of C, Si, G, at rcom tem-

perature, js very unstable for Pb (1.53 eV), The calcu-
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lated elastic constants C;;, C;; and Cy, and vacancy
energy E,., are 0.5102, 0.4457, 0.1972 (eV A™7) and
0.49 (eV) respectively, agreeing well with the corre-
sponding experimental values of 0.5386, 0.4460,
0.1804 (eV A~*) and 0.50 (eV).

lst0) fag0l logel 4

0 0.5 1 0.5 6 025 0.'5)
q-- -—1q q—
Fig.l The calculated phonon frequenties of
FCC Pb {redl lines) compared 1o experimental
values {real circles, trangles, and squares)
alung (q00), {gq0) and {qqq) high symmetry directions

Table 2 The calculated un-relaxed and retaxed
surface: energies ¥ (me¥ A~2) of FCC lead
vompared with corresponding experimental values

Sueface Un-relaxed Relaxed Refl6] Refl13)
{100y 41.22 39.01 38.0

(110) 4153  37.99 418 35.0 7.3
(111)  3s5.22 3501 37.5 310 (exirapolated }

Fxpl 14]

Surface energies ¥ of Ph (100), (110) and (111} are
caleulated by directly applying the optimized potential .
The calculated results are compared in Table 2 with other
theoretical results and corresponding expermmental values.
The comparison is satistactory. Our calculated surface en-
ergy for the relaxed FCC (110 is 37.99 meV A2, very
close to the experimental value of 37.3 meV A~ ¥ 21 We
obtained an anisotropy in surface energy (defined as y
{110) #y (111}) of 1.09 for Pb, also in good agree-
ment with the value of 1.10 for FCC Pb in Ref [9]. This
is reasonable because Pb (111) surface is close — packed
while (110} surface is less flat. The small anisotropy for
Pb is quite close to the value of 1.10 for FCC Al

Table 3 The surface relaxation of FCC lead

in percentage cotnpared with experiments

(110}
Surfaces ———— co- (100) (¥11)
this work exp )

& - 18,25 -16.3  -6.77  -2.17
iy 1+ 10.88 +3.4 +3.23 +0.26
dyy -7.59 -4.0 -0.97 +0.01
dys +4.93 +0.46 +0.05
dss ~-2.90 -0.03
dy +1.65
dyy - 0.43

Large relaxations are obtained for lead surfaces (see Table
3). Severe inward contraction of the top-most layer of
(110} surface reaches about — 18.3% relative to perfect
FCC (110) inter-layer spacing, very close to the experi-
mental value of - 16,3%'"“!, The second inter-layer
spacing expands about + 10% . Experimentally, it ex-
pands about +3.4% . For the third inter-layer spacing,
the calculated value of —7.6% contraction alse qualita-
tively agree with corresponding experimental result of —
4.0% . The general trend of calculated results agrees with
available experiments and the contraction and expansion

alternation of inter-layer spacing has been well repro-

duced.

Reconstruction of Pb (11CG) surface is an interesting topic
in interpreting the surface properiies of the bulk . Recon-
structions of the un-relaxed and relaxed surface are com-
pared in Table 4. Both (1 x 2) and (1 x 3) reconstrue-
tions are unfavored in energies when compared wilh the
relaxed (110) surface. The velaxed Ph (110) has a sur-
face energy of 37.99 meV A” (see Table 2), lower than
both the surface energies of 40.60 for (1 % 2) reconstruc-

tion and 41.37 for (1 x3) reconstruction.

Tuble 4 Surface energies of the un-relaxed

and relaxed reconstructed Pb (110) surfaces

Reconstruction Un-relaxed Relaxed
ix2 42.16 4060
Ix3 42.49 41.37
This result is in accordance with Prince’s!" experimental

observalion that no reconstruction was observed with
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polassium adsorption on Pb (110) surface when examined
with 1EED and AES. As mentioned in by Bames ¢, ju-
stead of surface reconsiruction, sp-band ¥FCC metals like
Al and Ph exhibit (1 x 1) bulk truncation when clean

with quite large interlayer relaxations!*!,

A Monte Carlo simulation was perdormed to study the
melting behavior of bulk lead based upon a 8-layer slab
containing 5 x 5 x § = 200 atoms wilh periodic boundary
conditions in x, ¥ and z three dimensions. To ensure
that the system reaches its equilibrium stale at specific
lemperatures, three quantities including the averaged or-
der parameter S relative to the ideal FCC lattice, the en-

ergy evolution of the simulated system, and the radial dis-

tribution function, are used to monitor the simulation pro-

cess. The variation of the bulk order parameter § with
temperature T is shown in Fig.2. A sharp change of the
order parameter with temperature occurs between T =
375K (5=0.8) and 425K (§=0.06) hes clearly indi-
cated & phase transition {rom the ordered FCC lattice to a
disordered liquid phase. Al temperatures above 425K, §
values are steadily smaller than 0.07 and the radial distri-
bution are typical of liquids, indicating that FCC lead is
melt above 425K with this potential . This estimation is
about 25K lower than the pre-melting temperature 443K
observed in the core region of 6 nm Pb particles by Mito-
mel7! and surface-initiated pre-melting at about 450K ob-
served in Ref [8], Melting temperatures very with the
size of the particles studied. We predict that, with nano-
meler Pb particles smaller than énm in diameters, the

melting temperature of Pb may be even lower than 443K.

[

] 200 400 0 806
TK

Fig.2  Variation of the caiculated

onler parwneter § vis teperature T
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Fuarther investigations 1o apply the 2 + 3 hody effective po-

tential 1o micro-sized and medium-sized Pb, clusters (r

1174

=2 200) and similar systems' """ and gas-solid intetface

interactions are under progress.
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