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Cluster Structures and Stabilities from Solid-state Potentials 
Application to Silicon Clusters 

Sidian Li,t Roy L. Johnston and John N. Murrell* 
School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton BNl 9QJ, UK 

An empirical potential-energy function comprising two- and three-body terms, whose parameters have been 
determined from the properties of solid silicon, is used to study the structures and energies of silicon micro- 
clusters. For small clusters, densely packed (non-diamond) structures are found which are in broad agreement 
with a6 initio calculations. For larger clusters, optimisations starting from fragments of the cubic bulk solids 
indicate that close-packed structures are favoured initially and that diamond structures become relatively more 
stable only for clusters of well above 100 atoms. 

In recent papers,’-4 we have proposed a new potential- 
energy function for elemental solids and have shown that its 
parameters may be determined by fitting phonon and elastic 
constant data and the lattice energies and lattice constants of 
one or more crystalline phase. To date, the method has only 
been used to study cubic systems but our potential function 
should be generally applicable. 

Our objective is to obtain potentials which are applicable 
to the study of surfaces, defects, amorphous solids, liquids 
and clusters, as well as to bulk crystalline solids. To achieve 
this our potentials must be valid over a wide range of coordi- 
nation numbers and geometries and we have therefore repro- 
duced the properties of as many crystal structures as possible. 
Thus, the silicon potential used in this paper has been fitted 
to phonon and elastic constant data of the most stable 
(diamond) structure and, in addition, to the cohesive energies 
and lattice spacings of the face-centred cubic (f.c.c.), body 
centred cubic (b.c.c.) and simple cubic (s.c.) structures as cal- 
culated by first-principles pseudopotential methods by Cohen 
and c o - ~ o r k e r s . ~  These calculations have been shown to be 
very reliable when tested on experimentally known struc- 
t ures. 

In this paper we describe the application of our potential, 
derived for bulk silicon, to the study of the structures and 
stabilities of discrete silicon clusters ranging from the dimer 
to structures containing hundreds of atoms. There is a wealth 
of experimental mass-spectroscopic data available for gas- 
phase silicon clusters (detected as their cations or anions) and 
their reactivities have also been investigated.’~~ There is, as 
yet, no clear evidence for the existence of ‘magic numbers’ 
corresponding to exceptionally stable cluster nuclearities, as 
the intensities of the mass-spectral peaks seem to depend on 
the method of generation and ionisation of the clusters.’ 

We are certainly not the first to utilise an empirical poten- 
tial, derived from crystalline solids to study microscopic 
systems,’-’ but we believe that our function reproduces a 
more extensive data base than others that have been used. 
The full range of applicability of our functions have yet to be 
tested. We are currently investigating the 2 x 1 reconstruc- 
tion of the Si(100) surface2’ and can reproduce the surface 
dimerisation, though more subtle aspects of the restructuring 
such as the tilting and twisting of the surface dimers have yet 
to be studied. As clusters can have as many as one third of 
their atoms on the surface,” one would expect cluster and 
surface structures to have common features. Indeed Kaxiras 

t Permanent address: Institute of Molecular Science, Shanxi Uni- 
versity, Taiyuan, People’s Republic of China and Yungcheng Com- 
munity College, Yuncheng, People’s Republic of China. 

has recently suggested that the clusters Si,, and Si,,, which 
he finds to be particularly stable, have surface structures 
which are similar to the 7 x 7 and 2 x 1 reconstructions of 
the bulk Si( 11 1) surface, respectively.22 

Potentials for small clusters should be electronic state spe- 
cific. For example ab initio calculations on c, indicate that 
there are two low-lying structures which are very close in 
energy; a singlet planar rhombus and a triplet linear struc- 
ture, though there is some disagreement as to which is 
actually the ground state.’, Clearly the potentials required to 
reproduce these minima accurately on the singlet and triplet 
surfaces are quite different. However, potentials derived from 
crystalline solids (e.g. diamond) will not be electronic state 
specific as in the dissociation limit they will not satisfy the 
Wigner-Witmer electron correlation rules for breaking 
chemical bonds.24 We would, however, expect such potentials 
to be applicable to clusters which are sufficiently large that 
there are several electronic states populated at the tem- 
perature at which the studies are made; certainly as the size 
of the cluster increases a potential deduced from bulk proper- 
ties must become more valid. Another problem is that for 
small clusters highly symmetrical structures may give rise to 
electronic states which are unstable with respect to Jahn- 
Teller or pseudo-Jahn-Teller distortions and these distor- 
tions may not be reproduced by non-state-specific potentials. 
Again this should be less of a problem for large clusters 
where the electronic energy levels approach a continuum. 
Chelikowsky and Phillips have proposed that Jahn-Teller 
distortions in large clusters will be reduced by steric 
hindrancelEb so that any distortions are likely to be restricted 
to the surface atoms.IEd 

Our potential is written as the sum of effective two-body 
and three-body terms, such that the total energy of a cluster 
is given by:2 

v = c c v:;) + c 1 v g  (1) 
i j > i  i j > i  k > j  

with the two- and three-body components having the follow- 
ing analytical forms : 

(2) 

(3) 

V!;) = - D( 1 + u2 pij)exp( - u2 pi j )  

v.. $2 - - DP(Qi, Qz Qdexp(--a, Qi) 

where P is a totally symmetric polynomial in the symmetry 
coordinates Qi .25 

(4) 
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Table 1 Parameters defining the silicon potential used in this study 

a2 6.50 c,, 3.598 c4 -5.570 c8 - 111.809 
U ,  6.50 c1 -11.609 c5 79.210 cg 9.705 
D/eV 2.918 c2 13.486 c6 -6.458 cl0 38.297 
r , /A 2.389 c3  -18.174 c, 23.383 

and 

Pij  = (rij - re)/re ( 5 )  

The silicon potential used in the work described here is based 
on a quartic polynomial: 

P(Qi, Q2, Q 3 )  = co + ciQi + c2QI + c,<Qf + Q f )  
+ C ~ Q ?  + ~5 Qi(Q,' + Q:) 
+ cJQ3 - 3Q3 Qi) 
+ C7 QI + Cs Q:(QZ -I- Q:) 
+ cdQ: + Q:)* + cio Qi(Q3 - 3Q3 Q,') (6) 

and the complete set of parameters for this potential are 
given in Table 1. 

Finding the optimum geometry of a cluster X, is, except for 
small n, a non-trivial task, owing to the high dimensionality 
of the problem. Various strategies have been reported in the 
literature for this minimisation ; among the most common are 
the molecular dynamics (MD) and Monte Carlo (MC) 
approaches, usualy involving simulated annealing and quen- 
ching steps.26 For our calculations we have adopted the fol- 
lowing strategy: (a) For small clusters (n < 8) we use a 
numerical minimisation routine (NAG library routine 
E04JAF)27 which starts from a randomly generated structure 
and finds local minima by treating the 3n Cartesian coordi- 
nates as independent variables. This was found to be a fast 

and reliable procedure. An MC-based routine was found to 
give the same structures. (b)  For larger clusters we first gener- 
ated benchmarks for finite 'shell' structures generated from 
the bulk cubic solids (diamond, s.c., b.c.c. and f.c.c.) and also 
for icosahedral structures, with the radius of each concentric 
shell around a central atom being independently optimised. 
For example, a cluster of 47 atoms can be generated from the 
diamond structure and consists of concentric shells of 4, 12, 
12, 6 and 12 atoms around the central atom, the whole 
cluster (which may be written 1 : 4 : 12 : 12 : 6 : 12) possessing 
0, symmetry. The optimised shell structure is obtained by 
varying the radii of these five shells. (c) Many of the radially 
optimised shell structures generated by approach (b) were 
used as initial structures for a full optimisation of all atomic 
coordinates using the same program as in (a). In some cases 
(vide infra) the shell structure was retained, while in others it 
was lost, though often only the outer shells were split into 
two or more sub-shells. We have made a thorough study of 
clusters up to n = 20 and a partial study of selected larger 
clusters. 

Small Si Clusters (Si24i8) 
The binding energies (per atom) and geometries calculated, 
using our bulk Si potential, for silicon clusters with up to 
eight atoms are given in Table 2 and some of the structures 
are shown in Fig. 1. For the smaller clusters, several of the 
higher symmetry structures are presented as benchmarks, 
together with an indication of whether they correspond to 
global (stable) or local (metastable) minima on the potential- 
energy hypersurface, or whether they are not minima at all 
(unstable). 

Before commenting on these results, it is worth reiterating 
that our potential is not electronic state specific so we do not 

Table 2 Optimised structures, bond lengths and binding energies calculated for silicon clusters with 2-8 atoms 

cluster structure symmetry bond lengths/A binding energy per atom/eV 

Si, dimer 
Si, isosceles triangle 

linear 
equilateral triangle 

tetrahedron 
Si, square 

Si I 

pentagon 
Si, I1 

111 

Si , 

Si 8 

octahedron 
hexagon 
IV 

V 

cube 
VI 

VII 

Dmh 

c z v  
D m h  

D3h 

D4h 

Td 

D5, 
D 2 d  

czv 

D3h 

O h  

D6h 

c z v  

CZ 

0, 
Cl 

CZ 

2.39 
2.46, 3.26, 0 = 83.3" 
2.45 
2.69 
2.47 
2.77 
r 1 2  = 2.57 
r 2 2 .  = 3.32, r l l .  = 3.41 
2.40 
r I 2  = 2.52, r22 ,  = 2.62 
r , 2 .  = 3.37, r z 2 .  = 3.49 
r l l .  = 2.55, r12  = 2.52 
r22' = 2.45 
2.78 
2.43 
r 1 2  = 2.66, r 1 3  = 2.57 
rz4 = 2.58, r34 = 2.52 
r 2 2 ,  = 3.38, r 2 3  = 3.36 
r 1 3  = 2.48, r 2 2 .  = 2.54 
r Z 3  = 2.54, r24 = 2.48 
r34, = 2.52 
2.5 1 
r 1 2  = 2.62, r I 3  = 2.71 
r14 = 2.56, r 1 5  = 2.65 
rZ6 = 2.57, rz7 = 2.54 
r3 ,  = 2.65, r , ,  = 2.62 
r,, = 2.50, r s 7  = 2.57 
r38  = 2.56, r 5 8  = 2.50 
r l l r  = 2.52, r I z  = 2.49 
r14 = 2.49, r I 4  = 3.38 
r Z 3  = 2.55, r34 = 2.48 

1.46 
1.97 (g)" 
1.77 (1)" 
1.94 (1) 

2.47 (1) 
2-67 (8) 

3-01 (g) 

3.25 (g) 
2.68 (n)" 

2.98 (1) 

3.03 (n) 
2.59 (n) 
3-38 (g) 

3.32 (1) 

3.59 (8) 
3.49 (1) 

3.46 (1) 

a g = global minimum; 1 = local minimum; n = non-minimum. 
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Structures of some of the silicon clusters listed in Table 2 

V VI 

Fig. 1 

expect to find a close correspondence between our results and 
the geometries and energies of particular electronic states. 
However, the results for this group of small clusters are 
important for seeing how the larger clusters are built up. 

The two-body term in our potential (which has D = 2.92 
eV, re = 2.39 A) is a little weaker than that for the 
ground state of Si, (D = 3.24 eV, re = 2.25 A),,* however, the 
degeneracy-weighted average of the dissociation energies of 
all of the states arising from the ground electronic configu- 
ration of Si, (n;) is 2.86 eV and the average bond length is 
2.29 A,29 values which are closer to our parameters. 

In the following discussion of clusters Si,-S, we have com- 
pared our results with the best available ab initio calculations 
of Raghavachari and c o - ~ o r k e r s , ~ ~  which are at the HF/6- 
31G* level. Accurate calculations on small silicon clusters, 
which agree essentially with those of Raghavachari, have also 
been performed by Pacchioni and Koutecky3' and Messmer 
and c o - w o r k e r ~ . ~ ~  Further calculations on silicon clusters are 
listed in ref. 7 and 8. These calculations all predict structures 
for low-nuclearity clusters (up to 10 atoms) which are more 
close-packed than bulk diamond; this reduces the number of 
dangling bonds arising from the high proportion of surface 
atoms. 

Using our silicon potential, we find Si, to have a C, ,  struc- 
ture, with the bond lengths and bond angle being slightly 
larger than predicted by the ab initio calculations (re = 2.17 
A, 8 = 78").,O The stability is a little lower than the calcu- 
lations and experiments suggest (2.5 eV per atom)., Our 
potential predicts a metastable D3h minimum 0.03 eV per 
atom above the global minimum and the ab initio calcu- 
lations identify this as the geometry of the lowest triplet state 
of Si, , with a binding energy only 0.01 eV per atom less than 
that of the singlet (C,,) state. Our energy difference between 
the bent (C,,) and linear (Dcoh) structures is quite close to the 
ab initio value of 0.14 eV per atom, although our finding that 
the linear structure is at a very shallow minimum is not sup- 
ported by Raghavachari's calculations. 

We find the most stable Si4 structure to be a square (D4h) 
whereas the ab initio calculations give a rhombic (D2h) 
ground state, with the D,h geometry not being a minimum on 
either the singlet or triplet surfaces, owing to strong pseudo- 
Jahn-Teller distortions of both the singlet and triplet squares. 
We find tetrahedral Si, to be metastable, in agreement with 
the ab initio calculations. 

The only minimum we have found on the Si, surface has 
D,, symmetry (I) and this is also found by ab initio calcu- 
lations. It is misleading to refer to this structure as a trigonal 
bipyramid as there is a significant compression along the 
three-fold axis (ax-ax = 3.41 A) and the equatorial bonds are 
consequently quite long (eq-eq = 3.32 A cJ: ax-eq = 2.47 A) 
which is confirmed by the ab initio calculations. The ab initio 
geometry (ax-eq = 2.34 A, eq-eq = 3.26 A, ax-ax = 2.78 A; 
binding energy = 3.30 eV per atom) is in good agreement 
with that reported here, though our calculations underesti- 
mate the axial compression; in fact all of our calculated bond 
lengths are slightly too long. Interestingly, the ab initio calcu- 
lations also find30a a metastable triplet state arising from an 
uncompressed trigonal bipyramidal geometry (ax-eq = 2.40 
A, eq-eq = 2.48 A, ax-ax = 3.86 A; binding energy = 3.12 eV 
per atom). 

The important structural feature of the Si, cluster (I) is the 
occurrence of four-atom faces with local 'butterfly' (D2d) 
geometries. This feature is maintained for Si,, by bridging 
one of the faces of Si, to give a structure with overall D2d 
symmetry (11). The best ab initio structure is very similar to 
our minimum, but has lower symmetry (C,,) owing to the 
formation of two bonds (eq-eq in the parent Si, cluster) 
which yields an edge-bridged trigonal-bipyramidal structure. 
Extended Huckel calculations on our structure indicate an e2 
ground configuration in the D2d geometry which would be 
unstable to a pseudo-Jahn-Teller distortion towards the ab 
initio C,, structure. Our D2d structure is close in energy to 
the ab initio C,, structure. We have also found a local 
minimum corresponding to an approximately planar struc- 
ture (111) with C,, symmetry comprising two fused four- 
membered rings. 

Adding a further face-capping atom to the D2d Si, cluster 
leads, with our potential to a Si, structure (IV) which has C,, 
symmetry. This cluster has one atom which is four-connected, 
but the four bonds are not tetrahedrally oriented. Ab initio 
calculations on a number of Si, structures found the pentag- 
onal bipyramid to be most stable, a rather surprising result as 
the axial atoms have five short bonds (2.47 A) to the equato- 
rial atoms and there is also a short (2.58 A) axial-axial dis- 
tance, though the overlap populations do not indicate 
significant bonding along this axis.,' We have also found a 
local minimum with C, symmetry (V) which is formed by 
bridging two of the atoms of structure 111, together with a 

Pu
bl

is
he

d 
on

 0
1 

Ja
nu

ar
y 

19
92

. D
ow

nl
oa

de
d 

by
 S

ha
nx

i U
ni

ve
rs

ity
 o

n 
25

/1
0/

20
14

 1
4:

22
:5

3.
 

View Article Online

http://dx.doi.org/10.1039/ft9928801229


1232 J. CHEM. SOC. FARADAY TRANS., 1992, VOL. 88 

VI I 

Fig. 2 Generation of the C ,  symmetry Si, cluster (VII) from the 
cube. The distortion (indicated by arrows) results in the formation of 
a bond across one diagonal (indicated by the dotted line) and the 
breaking of two bonds (marked x) 

folding of the Si, fragment. Our structures do not appear to 
have been examined by ab initio methods. 

Our most stable Si, structure is the cube, but we found two 
metastable structures, one of which (VI) has no symmetry ele- 
ments and is formed from the global Si, minimum (IV) by 
bridging across one of the four-membered faces. The second 
local minimum that we found has C, symmetry (VII) and is 
related to the cube by forming a bond across one of the 
diagonals of a square face and breaking two bonds, as shown 
in Fig. 2. Neither of these structures have been examined by 
ab initio calculations; the high symmetry ones may of course 
be unstable to Jahn-Teller or pseudo-Jahn-Teller distortions. 
The best ab initio structure for Si, is a bicapped (on opposite 
faces) octahedron with C,, symmetry (owing to a Jahn-Teller 
distortion away from D,, ~ymmetry).~' 

The most important generalisation that can be drawn from 
our results for small Si clusters is that there is a preponder- 
ance of four-atom rings. Fig. 3 shows how some of the global 
and local minima that we have found can be built up from 
square Si, by successively adding two-coordinate bridging 
atoms. These structures are more compact than microcrystal- 
line fragments of the diamond lattice in which one sees exclu- 
sively six-membered rings. As mentioned above, the 
formation of more closely packed structures presumably 
occurs so as to minimise the number of surface dangling 
bonds. As the cluster size increases, however, larger rings 
should become more prevalent. Even for Si, (V) and Si, (VII) 
we see metastable structures containing five-membered rings. 
Our calculations do not predict any magic number clusters in 

the region Si,-Si, , a result which is in agreement with the ab 
initio work of Raghavachari.,' 

Radially Optimised Shell Structures 
Fig. 4 shows the binding energies per atom of Sin shell clus- 
ters ( n  c 100) derived from the cubic solids. The structures 
were relaxed by allowing the radii of the shells to vary inde- 
pendently as described above. We also have results for larger 
diamond shell structures. The largest we have considered has 
357 atoms (19 shells) and a binding energy per atom of 4.63 
eV, which is still short of the bulk Si (diamond) cohesive 
energy of 4.72 per atom.33 However, even for the 19-shell 
diamond cluster ca. one third of the atoms are surface atoms 
(i.e. they have unsaturated valencies ; dangling bonds) which 
easily accounts for the energy loss. 

From Fig. 4 it can be seen that the S.C. and b.c.c. fragments 
stand out as being particularly stable; less so the f.c.c. frag- 
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Fig. 4 Binding energy per atom as a function of the number of 
atoms for radially optimised silicon shell clusters derived from the 
diamond (d), S.C. (s), b.c.c. (b) and f.c.c. (f) solids. The bulk values are 
indicated by the arrows at the right 
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Fig. 3 
two-coordinate bridging atoms (indicated by shading) 

Illustration of the stepwise generation of Si,-Si, structures, consisting exclusively of four-membered rings, from square Si, by adding 
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mens although Si,, has a higher binding energy per atom 
than the diamond cluster of comparable size. Semiempirical 
(SINDO1) calculations by Kupka and Jug found some f.c.c., 
h.c.p. and icosahedral structures to be more stable than 
diamond structures in the range 13-35 atoms.’l Above 35 
atoms, diamond shell structures were found to be more stable 
than h.c.p., but still less stable than f.c.c. This finding is con- 
sistent with our work, which predicts that the diamond struc- 
tures become more stable than the close-packed ones at 
nuclearities well above 100. 

As shown in Fig. 4, we find a general upward trend in 
binding energy for all the cubic structures, which is to be 
expected since the average number of dangling bonds 
(unsaturated valencies) per atom decreases as the ratio of 
surface to bulk atoms decreases. Kupka and Jug’s calcu- 
lations, while showing a steady rise in binding energy for the 
diamond clusters, predict a decrease in binding energy for 
f.c.c. and h.c.p. shell clusters.” We think that this result is 
unphysical as it implies that the f.c.c. and h.c.p. binding ener- 
gies would not converge to the bulk values for infinite 
nuclearities. Kupka and Jug state that the binding energy of 
f.c.c. Si,, (3.66 eV per atom; c t  our value of 3.80) is anom- 
alously low, but it is more likely that their values for Si13 
(4.37 eV per atom) and Si,, (4.24 eV per atom) are too high. 

Superimposed on the general increase in binding energy 
with cluster nuclearity, shown in Fig. 4, there are a number of 
peaks of stability corresponding to magic number clusters. 
The most prominent of these is the three-shell 27-atom S.C. 
cluster with a binding energy of 4.14 eV per atom; the most 
stable shell structure up to 55 atoms. This cluster will be dis- 
cussed in greater detail below. 

Calculations were also performed on shell clusters pos- 
sessing icosahedral symmetry, with 13, 43 and 55 atoms. The 
icosahedral and f.c.c. structures, with the same nuclearity, 
have approximately the same energy. For Si13 the centred 
icosahedron and the f.c.c. centred cuboctahedron are almost 
isoenergetic while for Si,, the f.c.c. structure is favoured by 
0.03 eV per atom and for Si,, the icosahedral structure is 
favoured by 0.02 eV per atom. Kupka and Jug found the 
centred icosahedron to be a true minimum on the Si,, poten- 
tial surface and the f.c.c. structure to be a first-order saddle 
point which is 0.58 eV per atom less stable,” a much greater 
energy difference than we obtain. The h.c.p. Si13 structure (a 
centred anti-cuboctahedron, which we have not investigated) 
is calculated to be 0.06 eV per atom less stable than f.c.c. 

For certain cluster nuclearities it is possible to construct 

complete shell clusters based on two or more bulk structures. 
In these cases, examples of which occur at n = 19 and 27, it is 
informative to see which is the energetically favoured struc- 
ture. For n = 27 we find that, starting from radially expanded 
shell geometries, the radially optimised structures based on 
the S.C. and b.c.c. solids are identical, because the first shell of 
8 atoms in the b.c.c. structure (1 : 8 : 6 : 12) passes through 
the second and third shells to give the S.C. 1 : 6 : 12 : 8 shell 
structure. This is also observed for n = 19, where the S.C. 
cluster (with shell structure 1 : 6 : 12) relaxes to the f.c.c. ord- 
ering 1 : 12: 6. Starting from clusters which are not so 
expanded, however, introduces an activation barrier to shell 
interchange and the partially relaxed S.C. cluster with 19 
atoms is found to have a binding energy of 3.57 eV per atom, 
compared with the f.c.c. value of 3.72 eV per atom. 

The stabilities of complete shell structures have implica- 
tions for incomplete shell clusters also. Consider, for example, 
taking a stable filled-shell structure such as the S.C. Si,, 
cluster and adding successive atoms to the surface. If the 
binding energies of the additional atoms are zero (at worst) 
then the energies per atom for larger n are 4.12 x (27/n). For 
n = 29, for example, this gives a binding energy of 3.84 eV per 
atom, which is still greater than the energy of the diamond 
structure for n = 29 (3.61 eV per atom), so it is clear that the 
less stable filled-shell structures will relax to incomplete-shell 
geometries if the structure is fully optimised. 

Table 3 lists the optimised shell radius expansion factors 
for filled-shell structures with up to 55 atoms. These expan- 
sion factors are calculated as the ratio of the shell radius in 
the cluster to that in the bulk. The bulk radii have been cal- 
culated using the following relative nearest-neighbour dis- 
tances: 4s.c.) = 1.124d); r(b.c.c.) = 1.21r(d); r(f.c.c.) = 1.26r(d), 
which were calculated previously from our p ~ t e n t i a l . ~  

It is informative to consider what happens to the shell radii 
of the f.c.c. structures going from the 13-atom (one shell) to 
the 19-atom (two shells), 43-atom (three shells) and 55-atom 
(four shells) clusters. From Table 3 it is apparent that adding 
a shell to Si13 leads to an expansion of the inner shell from 
0.96 to 0.99 times the bulk f.c.c. radius, while the contraction 
of the second shell is quite substantial. This was also found 
by Kupka and Jug, and attributed by them to bonding 
between the first and second shells resulting in the inner shell 
being drawn out.2’ Adding a third shell causes the first shell 
to expand slightly (to 1.01 times the bulk value), but results in 
a large increase in the second shell radius (from 0.92 to 1.03 
times the bulk value). This is to be expected since the third 

Table 3 Optimised radii of shell clusters (with up to 55 atoms) derived from the cubic solids” 

no. atoms no. shells structure 4) binding energy per atom/eV 

5 
7 
9 

13 
15 
17 
19 
19 
27 
27 
29 
33 
35 
43 
47 
51 
55 

1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
4 
4 
3 
5 
4 
4 

d 

b.c.c. 
f.c.c. 

b.c.c. 
d 

f.c.c. 

S.C. 

S.C. 
S.C. 

b.c.c. 
d 

d 
f.c.c. 

d 
b.c.c. 
f.c.c. 

S.C. 

1 : 4  
1 : 7  
1 : 8  
1 : 12 
1 : 8 : 6  
1 : 4 :  12 
1 : 1 2 : 6  
1 : 6 : 1 2  
1 : 6 :  12:8 
1 : 8 : 6 :  12 
1 : 4 :  12: 12 
1 : 6 : 1 2 : 8 : 6  
1 : 4 : 1 2 : 1 2 : 6  
1 :  1 2 : 6 : 2 4  
1 : 4 : 1 2 : 1 2 : 6 : 1 2  
1 : 8 : 6 : 12 : 24 
1 : 1 2 : 6 : 2 4 : 1 2  

1.04 
0.95 
0.94 
0.96 
1.01, 0.91 
1.02, 1.01 
0.99, 0.92 
1.01, 0.95 
0.99, 0.98, 0.96 
1.04, 0.97, 0.94 
0.98, 1.01, 1.00 
1.00, 1.00, 0.95, 0.96 
0.98, 1.01, 1.01, 1.01 
1.01, 1.03, 0.96 
0.95, 0.98, 1.03, 1.00, 0.98 
1.02, 0.99, 1.01, 0.96 
0.99, 0.99, 0.98, 0.96 

1.96 
2.22 
2.55 
3.40 
3.77 
2.50 
3.72 
3.57 
4.14 
3.68 
3.61 
3.82 
3.77 
3.80 
3.51 
3.96 
3.87 

~~~ ~ 

” a(i) is the ratio of the ith shell radius in the cluster to that in the infinite solid. The nearest neighbour distances in the s.c., b.c.c. and f.c.c. 
infinite lattices are factors of 1.12, 1.21 and 1.26 greater than diamond (d), respectively. 
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shell contains 24 atoms and should have substantial bonding 
to the second shell atoms. On going to the four shell 55-atom 
cluster we see that the inner two shells are now very close 
(0.99) to the bulk values, though they are still slightly more 
expanded (relative to the bulk) than the third (0.98) and 
fourth (0.96) shells. 

Another interesting structure is the 15-atom b.c.c. cluster 
which shows a marked contraction of the outer shell of six 
atoms such that the second shell radius is only 0.91 times the 
bulk value, with the inner shell of 8 atoms having almost the 
same radius (1.01) as the bulk. This distortion producing a 
cluster which is almost spherical (r2/rl = 1.04 compared with 
2/J3 = 1.15 for bulk b.c.c.). Similarly the very stable 27-atom 
S.C. cluster has a cubic structure with 9 atoms per face, as 
shown in Fig. 5, but the a(i) values decrease with increasing 
shell number (i) so that the cluster becomes slightly more 
spherical. The great stability of this three shell cluster 
(binding energy = 4.14 eV per atom) compared with the two 
shell Si19 (3.57 eV per atom) and four shell Si,, (3.82 eV per 
atom) S.C. clusters is associated with the fact that the 8 third 
shell atoms are added to high (three) coordinate sites at the 
corners of the cube and they increase the coordination 
number of the 12 second shell atoms from 2 to 4. Thus the 
27-atom cluster has a binding energy which is quite close to 
that calculated for the bulk (4.58 eV per atom). Addition of 
the fourth shell, however, adds 6 atoms which lie above the 
faces of the cube in one-coordinate sites and they only 
increase the coordination number of the first shell from 5 to 6.  

In summary, although the b.c.c. and f.c.c. lattices are the 
least stable of the cubic structures that we have considered 
for silicon,344 radial relaxation results in the finite b.c.c. and 
f.c.c. shell clusters becoming more stable relative to diamond 
clusters of comparable size. This relaxation also results in the 
b.c.c. and f.c.c. shell clusters with five-shells or more having 
greater binding energies than the corresponding bulk solids, 
which is not observed for diamond or S.C. shell clusters in the 
region studied. The S.C. bulk structure is already quite close in 
energy to diamond and, even unrelaxed, the small S.C. shell 
clusters are more stable than diamond structures of compar- 
able size. This finding is consistent with the above mentioned 
predominance of four-membered rings in small clusters, since 
the S.C. shell structures are all characterised by large numbers 
of square rings. 

Fully Optimised Structures up to Si,, 
We have examined the full optimisation of all clusters up to 
Si,, starting from initial geometries which either correspond 
to completely or partially filled shell structures derived from 

Fig. 5 The unrelaxed cubic S.C.  shell cluster Si,, . The six first-shell 
atoms (1) define an octahedron, the twelve second-shell atoms (2) 
define a cuboctahedron, and the eight third-shell atoms (3) define a 
cube. Relaxation results in non-planar cube faces and shell radii 
which are closer than for the ideal cube 

the cubic solids, or are generated randomly. In all cases the 
shell structures relax further, though the final structure may 
differ depending on the starting point. For Silo , for example, 
the diamond, b.c.c. and f.c.c. precursors all relax to the same 
structure which has 16 bonds and a binding energy of 3.74 eV 
per atom, while starting from a 10 atom S.C. fragment leads to 
a 14-bond structure with a binding energy of 3.50 eV per 
atom. There is no guarantee that we have found the global 
minima for these clusters34 but extensive searches from ran- 
domly initiated structures have not produced lower energies. 
The 3n - 6 dimensional hypersurface has many minima, 
some of which are geometrically equivalent, but many others 
will be distinct and the minimisation routine that we use can 
find only the nearest local minimum to the starting point by 
a steepest descent method. Because the uncertainty of finding 
the true minimum increases with n, we have not yet made a 
comprehensive search above n = 20, although some of the 
complete shell structures have been examined. 

Fig. 6 shows the binding energy per atom as a function of n 
for the fully optimised structures. For the smaller clusters 
there is a considerable increase in stability on relaxing the 
constraint of shell structure and consequently there is a 
steady rise from n = 2 to 8 but thereafter the slope decreases 
considerably. The value for n = 9 is slightly lower than for 
n = 8, though the total binding energy continues to rise at a 
rate of ca. 4 eV per atom added. The most important point to 
note is that the approach to the asymptotic (bulk diamond 
structure) limit of 4.72 eV per atom is very slow, as in clusters 
of up to 20 atoms, there are considerably more surface than 
bulk atoms. There is no sign of magic numbers (corre- 
sponding to clusters with substantially higher binding ener- 
gies than their neighbours) in the series so far. 

Summary of Previously Published Potentials 
In recent years there have been many studies of silicon clus- 
ters using empirical potentials derived from bulk proper- 
ties. 7,9--19 We here refer specifically only to two recent 
studies, by Chelikowsky, Phillips and co-workers” and by 
Bolding and Andersen.” 

Bolding and Andersen have used a modified Tersoff 
potential’ (where many-body effects are included via an 
environment-dependent two-body term) in which the 
bonding in small clusters is divided into 7c and CJ com- 
ponents.’’ The structures that they obtain as the global 

4.00 4 
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1.50 4 
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Binding energy per atom as a function of the number of Fig. 6 

atoms for fully optimised clusters Si2-Si20 
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minima of Si,, Si, and Si, are in good agreement with those 
obtained from a6 initio c a l c ~ l a t i o n s . ~ ~  For Si,, Si,, Si, and 
Silo, however, the Bolding and Andersen global minima cor- 
respond to local minima on the ab initio surface. For Si, the 
predicted structure is an octahedron, which is close in energy 
and geometry to the ab initio C,, structure, into which it can 
be converted by a Jahn-Teller distortion. Bolding and Ander- 
sen have also investigated the potentials of Stillinger and 
Weber,' Biswas and Hamann" and Tersoff." In agreement 
with previous MD studies by Feuston et  al.', they found that 
the simple Stillinger-Weber potential yields clusters which 
are too open (for instance the most stable Si, structure is the 
planar pentagon) which is presumably due to the bias which 
the Stillinger-Weber three-body term has for tetrahedral 
angles.' Similar results were obtained with the Biswas- 
Hamann potential' ' which has a qualitatively similar three- 
body term. Finally, Bolding and Andersen found that 
amongst several Tersoff potentials," the one that gives the 
best agreement with the ab initio calculations (and their own 
potentials) gives the poorest fit to the properties of bulk 
silicon. It has also been found that Tersoff's potential gives 
clusters which are more stable than the bulk,I7 which is 
clearly unphysical.22' It should be noted that both the 
Stillinger-Weber and Biswas-Hamann potentials give good 
fits to the properties of diamond silicon, but fail badly for 
clusters. 

Chelikowsky, Phillips and co-workers derived a seven- 
parameter potential for silicon' ' which reproduces the 
energy-volume curves calculated by Cohen and co-worker? 
rather than phonon dispersion curves. With the addition of 
four ' backbonding' parameters, designed to reduce surface 
forces, they have obtained reasonable agreement with the ab 
initio results for Si,-Sil0 (though Si, is predicted to be tetra- 
hedral and Si, octahedral). They also predict an icosahedral 
growth pattern for clusters Sin with 10 < n < 20 with magic 
number stabilities for icosahedral Si13 and fused bi- 
icosahedral Si,, . For 20 < n < 30 some elements of this pen- 
tagonal growth sequence are retained. The problem with the 
Chelikowsky-Phillips potential is that the agreement with ab 
initio geometries can be obtained only by introducing the 
backbonding parameters which would have to go to zero in 
the bulk solid and presumably also in very large clusters. 
Whilst the authors claim that this enables the study of metal- 
lic (close-packed) and covalent (diamond-like) clusters as a 
function of a single parameter (one of their four backbonding 
parameters), it is difficult to see how this parameter should be 
defined in systems, such as liquid or amorphous silicon, 
where different types of bonding coexist. 

Chelikowsky has also noted that for low cluster 
nuclearities f.c.c. fragments have greater binding energies than 
diamond fragments and estimates the crossover as occurring 
between 40 and 50 atoms, although since his structures are 
not fully optimised he says the crossover point may lie 
between 20 and 100 atoms."' Note, however that the 
nuclearities investigated do not all correspond to complete 
shell structures as in our study. 

Finally, we would like to mention recent applications of 
density functional techniques to the study of the structures, 
energies and reactivities of silicon clusters. Tomanek and Sch- 
luter have performed combined tight-binding density func- 
tional calculations on silicon clusters up to Si1,.35 Their 
results are in good agreement with the ab initio work of Ragh- 
avachari and c o - w ~ r k e r s . ~ ~  They find a gradual increase in 
binding energy with nuclearity, converging to the bulk value 
very slowly, as in our calculations, and estimate the close- 
packed-diamond crossover to occur somewhere in the range 
100 < n < 1OOO. The model of Tomanek and Schluter has 
been criticised, however, on the grounds that it overestimates 

the stabilities of highly coordinated structures by too large a 
margin (several eV per a t ~ m ) . ~ ~ ' . ~ ~  

Ballone et a!. have used the MD-density functional method 
of Car and Parinello3' to study clusters with up to 10 
atoms.38 The minima obtained generally agree with the ab 
initio calculations. Si is an interesting case. Raghavachari's 
ab initio calculations originally predicted a tetracapped octa- 
hedral geometry3'" but Ballone et aI. found the tetracapped 
trigonal prism to be slightly more stable (with a binding 
energy less than 0.01 eV per atom higher than that of the 
tetracapped octahedron).,' Upon reinvestigating the 
problem, Raghavachari and Rohlfing found that the two 
structures do in fact lie very close in energy and that the rela- 
tive stability of the two isomers depends on the extent to 
which electron correlation is in~luded.~" 

Recently, Andreoni and Pastore have explored the trans- 
ferrability of classical (bulk-derived) potentials to silicon 
micr~clusters,~' by comparing the results of computer simu- 
lations using the Car-Parrinello method37 and the Tersoff" 
and (early) Chelikowsky-Phillips' "vb potentials. They point 
out that the empirical potentials give the 'wrong' structures 
for Si, (where they predict a tetrahedral geometry) and for 
Si8-Silo. Chelikowsky et  al. subsequently improved their fit 
by increasing the back-bonding parameter.'8d 

In conclusion, our potential, derived from bulk properties, 
with no additional parameters specific to clusters, performs at 
least as well as any of the empirical potentials mentioned 
above. We are currently studying the optimum structures of 
larger clusters ( n  > 20) in more detail and we hope also to 
obtain additional information on how our potential performs 
for surfaces and defects. We see no evidence at the present 
time to support the pessimistic view of Biswas and Hamann 
that a potential which simultaneously fits data from small 
clusters and solids should, necessarily, include N-body terms 
with N > 3.l" 
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University Research Fellowship. 
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